Anecdotes on stormwater design, management, and regulation by a non-engineer
The purpose of this series is to present case studies and general thoughts on stormwater. When possible, I want to share interesting examples that may offer opportunities to challenge existing paradigms and spark discussion. As an ecologist/toxicologist, I have very much enjoyed this now 20+ year foray into what is often an engineer’s wheelhouse. My hope is that I can offer a different angle on stormwater, as we seem to be increasingly affected by high storm intensities and more stringent regulations across the country.
A Little Historical Context…
Stormwater has, and continues to be, largely the purview of engineers. Engineered designs for managing stormwater have existed for thousands of years and can be seen in both the “ancient” old (Mesopotamia) and new (Mayan and Aztec) world. Designs were empirical and began out of necessity for safety and to protect land uses, such as residences and agriculture. In modern times, empirical observations have been converted into modeling tools to simplify the process greatly.
These days, stormwater issues are getting more complex. Heavy, widespread water pollution generally began in the mid-1800s with the Industrial Revolution but became a more obvious problem following World War II. The first major U.S. water quality law was enacted in 1948 and became much more prominent in 1972 as the Clean Water Act (CWA) we know today. The CWA addresses stormwater because it clearly has the potential to carry pollutants, particularly when it originates from large industrial sites.
More recently, we have become much more aware of the key role of long-term planning when it comes to stormwater. Trying to engineer your way out of a stormwater problem will likely be much more expensive than simply planning well and maintaining a properly designed system.
Although stormwater engineering was once simply about preventing stormwater from being destructive, it has now become at least as much about maintaining water quality. As pollutants become more prevalent in more confined and constrained systems, effects on human health and the environment are likely to be more pronounced, especially when existing ecosystem services are inadequate to mitigate impacts. Moreover, ecosystems expected to treat stormwater, such as wetlands and streams, are now likely protected themselves, and opportunities for “dilution being the solution to pollution,” while still a valid concept, are becoming rarer. Our ecosystems simply do not have the capacity to handle everything we are throwing at them.
That’s the context for this series: How we control and treat stormwater in the context of interesting observations and experiences. The intent is to share stories and thoughts to create conversation and reflection on stormwater played against the regulatory background.
Authors Note
I am an ecologist with a postdoctoral background in environmental toxicology and have been professionally engaged as a consultant in water quality issues since 1989. Recently I have become engaged in a number of legal discussions and disputes regarding water quality; in particular, industrial stormwater, and I continue to be interested by issues that come up during the course of a general stormwater practice.
I am a pragmatist: I have practiced long enough that I have left idealism behind. Idealistic approaches are valid as a theoretical baseline, but anything beyond that must have scientific or well-documented empirical support. Otherwise, idealism is just sort of adorable, if not misguided, and can lead to real problems.
As an ecologist, I respect our ecosystems as much as anyone. Our goal is to protect human health and the environment. Some parts of this series may appear to some that I’m “siding” with industry or other client concerns, but my intent is always to balance idealism against practical and scientific reality.
In summary: “The road to hell is often paved with good intentions.”
Let’s walk the road together and see what we can figure out.
According to Sean Bothwell, the executive director of the California Coastkeeper Alliance, “There are … thousands of facilities that have failed to enroll in the industrial stormwater permit, creating an economic disadvantage for those facilities that are doing their job to be compliant with their permit. SB-205 will level the playing field for the regulated community and help California achieve their mission of attaining swimmable, fishable, and drinkable California waters.”
California’s Stormwater Multiple Application and Report Tracking System (SMARTs) currently shows approximately 13,000+ active industrial stormwater sites/dischargers (Notice of Intent and No Exposure Sites). For these current General Stormwater Permit (IGP) enrollee’s vs. non-filers, the playing field has not been level across industrial sectors. There is a cost, sometimes substantial, for being in, and maintaining compliance under the IGP. The Permit is fee-based; water quality regulatory programs and the programs and resources supporting those programs are funded directly with the fees collected by these regulated entities under those programs.
The additional late-permittees and associated fees will help with the challenge of staffing at the State and Regional Boards, for processing and enforcement. As of today, there is not a direct additional fee/fine for the potential late filers; the message being that potential dischargers (or SIC code-based Facilities with a condition of No Exposure) not covered under the IGP should enroll as soon as possible, to avoid potential initial fines and future costly penalties.
Future penalties could also include “de facto” regulatory compliance penalties through non-government organizations (NGOs) and environmental group citizen lawsuits and 60-day notice-of-intents under Section 505 of the Clean Water Act. SCS Engineers advises businesses to check the Regional Board to see if they need coverage.
If unsure or unfamiliar with stormwater compliance, seek help from a Qualified Industrial Stormwater Practioner (QISP) or begin by using the resources linked to helpful sites from our blog. Although not a comprehensive list, these types of facilities do need stormwater compliance, as follows:
About the Author: Jonathan Meronek is a State of California Industrial General Permit (IGP) Qualified Industrial Storm Water Practitioner (QISP), QISP Trainer-of-Record (QISP-ToR) and an Envision Sustainability Professional (ENV-SP). With an eye to clients’ operational needs combined with long-term sustainable solutions, Jonathan has performed Site BMP and Pollutant Source Assessments, written Stormwater Pollution Prevention Plans (SWPPPs), and implemented Monitoring Implementation Plans (MIPs); for over one-hundred facilities throughout California.
He continues to provide National Pollutant Discharge Elimination System (NPDES) stormwater services for state, municipal, and private clients across a vast cross-section of industrial sectors. Jonathan works with LRPs, facility managers, and attorneys to re-evaluate facilities comprehensively for NPDES compliance using technology-based BPT/BCT/BAT/NSPS levels of control to reduce and eliminate pollutants of concern in stormwater discharge.
We will continue to see changes on the federal, state and local regulatory front that together will help us manage storm water in a smart, cost-effective manner preserving our water resources. Betsy Powers of SCS Engineers provides an update in her most recent article.
Until a new WOTUS definition is finalized, the U.S. EPA and the U.S. Department of the Army have indicated their intent to re-codify the pre-Obama regulations. The revised WOTUS rule is expected to include looser regulatory requirements, meaning fewer waters will qualify, and therefore, fewer permits will be required.
To speed up approvals of permits for highways, bridges, pipelines and other major infrastructure, an Obama-era executive order aimed at reducing exposure to flooding, sea level rise and other consequences of climate change were rolled back reducing the environmental reviews and restrictions on government-funded building projects in flood-prone areas.
Removing phosphorus from storm water runoff is a hot topic, with partners exploring alternative opportunities to reduce the introduction of phosphorus in runoff, remove it or manage it in watersheds.
More proprietary filters are being used for pretreatment before underground infiltration for redevelopment sites for total suspended solids (TSS) control and where land is limited. The performance of proprietary devices continues to be studied and improved to meet regulatory requirements. Increasing general attention is being paid to emerging contaminants that are problematic in storm water runoff. Among the emerging contaminants of concern are pharmaceutical and personal care products, pesticides, hydrocarbons, and hormones. Many of which are now included within the Endocrine Disrupting Chemicals group.
Betsy Powers is a civil and environmental engineer with SCS Engineers.