environmental engineering

August 31, 2020

oil and gas environmental engineers

If you want to know how to lead a company in a downturn…listen to this podcast from Oilfield 360 Media as David de Roode and Josh Lowrey interview Gabriel Rio, President, and CEO of Milestone Environmental Services.

Gabriel explains oilfield waste, how it is regulated, and managed, along with some of the better practices evolving in environmental waste consulting.

Play Podcast

I have known Gabriel since his early days at R360 when he found my presentation at the International Petroleum and Environmental Conference (IPEC), regarding evaporation ponds; I believe it was 2010. He invited me to stop by his office in Houston, which I did while presenting at the Produced Water Society’s annual conference in Nassau Bay that year. I worked with Gabriel for several years and into the start of when Waste Connections bought R360. He has some useful insights and knowledge of the oilfield waste industry, what is happening now, and what they are doing to weather the current 2020 pandemic storm. Part of the discussion is about carbon sequestration and oil field waste. – Neil Nowak, SCS Engineers, Oil & Gas Exploration and Production

 

Oil & Gas Exploration and Production

 

 

 

 

 

Posted by Diane Samuels at 6:00 am

August 28, 2020

changing recycling programs and the catalysts behind new innovations - infographic by SCS Engineers

Co-authors: Karen Luken of Economic Environmental Solutions International, an SCS consultant with Krista Long, Mike Miller, Anastasia Welch of SCS Engineers.

In 1987, the Mobro barge was carrying six million pounds of New York garbage. Its final destination was North Carolina, but the state turned it away. The Mobro barge spent the next five months adrift – rejected by six states and three foreign countries. The plight of the “Garbage Barge” was covered by the mainstream media throughout the summer. This unprecedented attention to trash generated a heated national debate about landfill capacity and recycling to reduce the municipal solid waste (MSW) stream. This dialogue swiftly and permanently transformed recycling in the U.S.

Between 1988 and 1992 alone, the number of curbside recycling programs increased from 1,050 to 4,354. Today, 49 U.S. states ban at least one product from landfill disposal, and twenty-seven states and the District of Columbia have at least one mandatory recycling requirement. The U.S. recycling rate has steadily increased from the Garbage Barge era; by 2017, the U.S. recycling rate reached 35.2 percent, with more than 94 million tons diverted from landfill disposal (67 million tons recycled and 27 million tons composted).

The U.S. was becoming increasingly proficient at collecting recyclables; however, our performance in domestically remanufacturing these resources into valuable commodities was less than stellar. China was the main destination for U.S. recyclables for most of the early twenty-first century. A number of factors contributed to this, including:

  • The growing need for metal, paper, and plastics in China’s expanding manufacturing industry;
  • Lax environmental regulations;
  • Cheap labor; and,
  • Inexpensive transportation of recyclable materials using shipping containers that would have been returned to China empty.

By 2018, China was the top importer of U.S. fiber recyclables, buying 2.73 million tons of U.S. corrugated cardboard during the first half of 2018 and 1.4 million tons of all other U.S.-sourced recovered fiber during the same time. The U.S. became dependent on China to process fiber recyclables, which contributed to the closure of 117 American fiber mills and the elimination of 223,000 jobs since 2000.

Sending plastics to China also impeded the U.S. progression of advanced plastic-recovery technologies, such as gasification and pyrolysis. Products created by these technologies can have a market value that exceeds the cost of collection and processing. This was not always the case when selling plastics to China, as this market could be highly volatile. Even with unpredictable revenues, recycling companies perceived China as an eternal end market for their plastics. With China basically locking up the plastic supply chain, advanced plastic recovery technologies in the U.S. could not secure sufficient quantities of feedstock and, consequently, could not demonstrate financial viability for commercial-scale facilities.

Not only did China enthusiastically accept our recyclables, but they also turned a blind eye to the large quantity of trash (contamination) mixed in with the recyclables. This lenient policy validated the U.S. preoccupation with collecting as many recyclables as possible without really considering their quality, potential to become a valuable commodity or the carbon footprint created by using fossil fuels to transport them halfway around the world. Some in the environmental community began to question the net ecological impact associated with transporting recyclables to developing countries for remanufacturing, especially with the limited environmental regulations in these countries related to processing them into a new product. However, state recycling goals are typically based on the quantity of materials collected (rather than if they actually become a marketable product), and local recycling programs were only turning a small profit, or barely breaking even. Thus, no one wanted to “rock the boat.”

However, in 2018, China introduced the “National Sword” that almost sunk the U.S. recycling boat for the short term. The National Sword banned many scrap materials from entering China and required other materials to meet an extremely strict (low) contamination level of only 0.5%. To put in perspective, contamination rates of U.S. recyclables before processing (directly after they are collected) can reach 25% or higher. Processing removes some of the contaminants, but not typically down to 0.5%. After the National Sword, U.S. recycling companies started looking for new markets in other Southeast Asia countries. However, one by one, Vietnam, Thailand, Malaysia, and India also shut their doors by introducing new restrictions on waste imports. So far, there are few signs that any of these countries intend to relax their standards on contamination levels again.

In the short term, there is no question that the National Sword severely disrupted recycling in the U.S. The Chinese market for recyclable commodities was greater than the next 15 markets combined, leaving the U.S. with little in the way of backup to accept this commodity. Thousands of tons of recyclables are now in a landfill rather than becoming a new product. Some municipalities have stopped collecting recyclables (or specific items) altogether, and many more, both public and private, have been stockpiling collected materials in the hope that markets return.

In the long term, the National Sword may be the most significant catalyst to transform recycling since the Garbage Barge started its journey over 30 years ago. In 2019, seventeen North American paper mills announced an increase in their capacity to process recycled paper. Also, and somewhat ironically, Chinese paper companies have begun investing in North American mills because they could not import enough fiber feedstock. Experts anticipate the domestic market for fibers mills to improve for at least another three years.

Chemical companies have also begun investing in advanced plastic recycling technologies, improving recycling systems, and creating bio-based polymers since 2018. In April 2019, Brightmark Energy announced the closing of a $260 million financing package to construct the nation’s first commercial-scale plastics-to-fuel plant, which will be located in Ashley, Indiana. The plant is in a testing phase, and Brightmark anticipates bringing the facility to production-scale in 2021. Now, rather than using fossil fuels to ship plastics to China, more than 100,000 tons of plastics from Indiana and the surrounding region will become feedstock to produce fuel and other intermediate products.

While the U.S. recycling industry was busy making a comeback from the National Sword industry-wide disruption, in came another setback in the form of the 2020 global COVID-19 pandemic. Shelter-in-place orders began in March 2020 in many states, which resulted in families spending more time in their homes than ever before. As of August 2020, many businesses, schools, and governmental entities are still allowing or requiring their stakeholders to work or learn remotely from home.

This work or learn from home phenomenon has resulted in massive increases in MSW and recyclables placed at the curb for collection. From March to April 2020 alone, U.S. cities saw a 20% average increase in MSW and recycling collection tonnage. Struggling restaurants have to offer takeout and delivery services, which is further contributing to a rise in paper and plastic packaging waste. COVID-19 restrictions such as mask mandates have resulted in higher amounts of personal protective equipment in the waste stream, and many items that previously could have been recycled are now discarded due to sanitary concerns.

The higher volumes of MSW and recyclables encountered at the curb during a pandemic present both challenges and opportunities. Challenges include budget cuts due to lower tax revenues, adequately staffing and ensuring the safety of waste-handling employees, and preventing the spread of COVID-19 through the waste stream. During this unprecedented time where municipalities face complex decisions on how to manage their MSW, the opportunity for innovation within the solid waste industry could not be greater.

Cities have begun to “right-size” their recycling systems by evaluating the usage of community recycling containers and reducing/redistributing containers to maximize the quantity of recyclables each site receives. Communities are evaluating curbside recycling programs to increase efficiency, and decreasing contamination is a priority. “When in doubt, throw it out,” has replaced campaigns such as “Recycle more, it’s simple.”

Cities are embracing the concept of public-private partnerships with their recycling processors as they recognize the vital and interrelated role of both the public and private sectors in recovering recyclables. Lastly, the U.S. is beginning to drive manufacturing and end-use markets domestically to stimulate demand for recyclable materials – materials for which we have become so effective at collecting.

There is little doubt that through leadership, innovation, and strategic planning, cities will continue to help lead the way on recycling to achieve landfill diversion and provide for a more environmentally and financially sustainable solid waste management system for the next 30 years.

 

 

 

 

Posted by Diane Samuels at 4:00 pm

August 14, 2020

Sustainable Materials Management - SCS Engineers

As reported in the July 29, 2020, digital news by Environmental Business International

Electronic waste represents billions in lost value
A record 53.6 million metric tonnes (Mt) of electronic waste was generated worldwide in 2019, up 21% in five years, according to the UN’s Global E-waste Monitor 2020. Only 17.4% of 2019’s e-waste was collected and recycled, meaning gold, silver, copper, platinum and other recoverable materials conservatively valued at $57 billion were mostly dumped or burned rather than being collected for treatment and reuse. The report predicts global e-waste will reach 74 Mt by 2030, making e-waste the world’s fastest-growing domestic waste stream. Global E-waste Statistics Partnership is a collaboration between UN University, International Telecommunication Union, International Solid Waste Assn. and the UN Environment Programme.

What can consumers do to help protect human health and the environment?
We can’t simply toss phones and electronics into our trash or recycling bins at home. To protect our health, water resources, and our communities we can reuse many of our devices and electronics. Try these; the links help you find local resources.

  • Try repairing devices before discarding them,
  • Regift or donate them,
  • Search the Internet for hundreds of reuse ideas – some are really creative and easy!
  • Locate an electronic waste recycler – many retail locations such as Home Depot and Best Buy will recycle e-waste.

Discarded products with a battery or plug such as computers and mobile phones are electronic waste or (e-waste). Toxic and hazardous substances such as mercury, brominated flame retardants (BFR), or chlorofluorocarbons (CFCs) are found in many types of electronic equipment and pose a severe risk to human health and the environment if not handled in an environmentally sound manner.

While most electronics are not designed or assembled with recycling in mind, separate collection and recycling of e-waste can be economically viable for products containing high concentrations and contents of precious metals. Cell phones and computers contain base materials such as gold.

Recycling programs are often confronted with the costs of recycling vs material recovery markets, and because the recovery of some materials is especially challenging. Within the paradigm of a circular economy, the mining of e-waste can be considered an important source of secondary raw materials.

Thanks for helping us keep our communities safer!

For community recycling and reuse program development visit our Sustainable Materials Management website.

 

 

 

 

 

Posted by Diane Samuels at 6:00 am

August 13, 2020

FAST-41 permitting SCS Engineers

The Pros and Cons of FAST-41

Title 41 of the Fixing America’s Surface Transportation Act, 42 U.S.C. § 4370m et seq., commonly known as the FAST-41 program, provides a set of tools to help coordinate the environmental processing and approval of most major infrastructure projects.

While not perfect, even presenting certain disadvantages at times, it is worthy of study. FAST-41 can lead to a variety of benefits, including a more predictable permitting path, increased accountability and coordination among federal agencies, and certain legal protections.

In the end, any potential FAST-41 project applicant should spend the time and resources to weigh the pros and cons of obtaining FAST-41 coverage. That coverage may help achieve the often-elusive goal of corralling disparate agencies and timelines for essential infrastructure projects, all without compromising the depth and integrity of the NEPA process.

Read the article published by the American Bar Association here.

About the Co-Authors: Nathan Eady is a vice president/project director, and land-use planner for SCS Engineers. He provides both technical and managerial support for various environmental, regulatory, and land-use projects. He is also SCS’s National Oil and Gas Expert and an expert in the safe permitting of plants and facilities. Mr. Kane, P.E., J.D. is president of P3 Collaborative LLC; Mr. Marsh is a Partner at Downey Brand LLP; Mr. Veasy is a senior associate at Downey Brand LLP.

 

 

 

 

Posted by Diane Samuels at 6:00 am

August 6, 2020

landfill cover system

… according to the experts, and continue through its active life. All along, operators should consider what they will need to show regulators once they are ready to install the final cap.

Choosing the right designer for liquids and gas management is critical.  The complexity of landfills varies from site to site, and issues related to conflicts among gas and liquids pipes, and pipes and final cover geosynthetics vary depending on the geometry and other landfill features involved at each location. In short, your designers must understand and work closely with your operations and monitoring team.

The best way to resolve conflicts before the closure is to have a coordinated effort among parties involved in the design to discuss and find solutions to every conflict at the design stage.

Read the article here.

 

 

 

 

Posted by Diane Samuels at 6:00 am

July 29, 2020

san timoteo landfill

San Bernardino County’s almost 500-acre San Timoteo landfill upgraded with gas monitoring and controls that manage its four blowers, flare station, pumps, valves, thermocouples, and other devices. There are 340 tags, 16 screens and more than 50 alarms monitored and managed by web-based SCADA software. Simpler, streamlined SCADA is more capable and closely connected, and less costly for landfill gas monitoring and control.

San Timoteo added options such as 3D imaging from flying drones and augmented reality (AR) displays. After flying the site, the imagery is uploaded to update its map and create point-cloud graphics. Aerial data is used to create topographic mapping, 2D images, 3D renderings, and GIS, thermal and tunable diode laser (TDL) images for methane leak detection.

Landfill operators and managers can remotely view the site using a mobile device, and “walk the site” from their offices or anywhere using the HoloLens.

Now nearly all landfills can afford to gather data with Ethernet and wireless networking, analyze data with sophisticated software, and display it on ubiquitous interfaces including tablet PCs and smartphones. The trick is applying the technologies in applications that enable more effective decisions.

Read the article in Control Magazine.

Watch a quick video at San Timoteo.

Learn more here.

 

 

 

 

 

 

Posted by Diane Samuels at 6:00 am

July 24, 2020

electric utilities and powerplants - scs engineers

Navigating the Permitting Process for CCR Impoundment Closures and Groundwater Monitoring Systems

Join us on Monday, July 27 from noon to 2 p.m. CDT to learn how SCS Engineers helps electric utilities overcome permitting obstacles at CCR impoundments and landfills. We offer the service nationwide.

Using case studies, we’ll highlight the permitting process and the keys to how electric utilities overcame obstacles to achieve the results they needed.

What you can expect to learn?

  • How long the permitting process takes
  • Specific steps in the permitting process
  • How to avoid permitting related delays
  • Permitting best practices

 

Registration and USWAG conference information here. This year’s event is a series of webinars USWAG is offering at no additional charge for members and affiliates. 

 

 

 

 

 

 

Posted by Diane Samuels at 6:03 am

July 17, 2020

Cleaning Up Brownfields

Partial Reprint of EPA Press Release

Over the past three years alone, EPA has assessed 6,572 properties, completed cleanups at 638 properties, and made 2,900 properties ready for anticipated reuse. Over this same period, more than 43,000 jobs have been leveraged as a result of Brownfields’ actions.

EPA recently announced the selection of 155 grants for communities and tribes totaling over $65.6 million in EPA Brownfields funding through the agency’s Assessment, Revolving Loan Fund, and Cleanup Grant Programs. Many of the communities and tribes selected can potentially assess or clean up brownfield sites in census tracts designated as federal Opportunity Zones.

“Without redevelopment opportunities, urban and rural communities – even those with deep historic roots – can eventually wither,” said OLEM Assistant Administrator Peter Wright. “Brownfields remediation and revitalization support communities by investing in the redevelopment of existing properties in the community.”

Since EPA’s Brownfields Program began in 1995, it has provided nearly $1.6 billion in Brownfield funding to assess and clean up contaminated properties and return blighted properties to productive reuse.  EPA’s Brownfields funding has leveraged more than $32.6 billion in cleanup and redevelopment from both public and private sources, which in turn has produced more than 167,000 jobs. This is an average of nine jobs per $100,000 of EPA investment and more than $17 in private funding for each dollar of EPA Brownfield grant funding.

Brownfields grants have been shown to:

  • Increase Local Tax Revenue: A study of 48 Brownfields sites found that an estimated $29 million to $97 million in additional local tax revenue was generated in a single year after cleanup. This is two to seven times more than the $12.4 million EPA contributed to the cleanup of these sites.
  • Increase Residential Property Values: Another study found that property values of homes near revitalized Brownfields sites increased between 5 and 15 percent following cleanup.

 

Background:

A Brownfield is a property for which the expansion, redevelopment, or reuse may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. The Brownfields program empowers local leaders and communities to transform underused and distressed properties into community assets across America. Brownfields funds assess and cleanup vacant, underused, and potentially contaminated properties so that property can be reused as housing, recreation, and open space, health facilities, social services, or commercial sites. There are estimated to be more than 450,000 Brownfields in the United States.

For more information on successful Brownfields program applications, site revitalization, and success stories nationwide visit Brownfields and Voluntary Remediation. If you’d rather jump right into a few success stories, click on these below:

Locate a Brownfields and remediation expert near you – SCS Staff

 

 

 

 

Posted by Diane Samuels at 6:00 am

July 13, 2020

industrial spill response

Are You Ready to Respond to a Spill? is Part II of the SCS Engineers SPCC series. Click to read Part I here.

Imagine you get a late-night call informing you that a transformer at one of your substations has failed, and as a result, 8,000 gallons of mineral oil spilled. Your next decisions are critical to timely industrial spill response, and taking the right steps will put you on a path to minimizing the environmental impact and your company’s liability. Do you know how you would respond?

If your facility has over 1,320 gallons of oil, your required SPCC Plan should contain spill response steps. If your facility has less than 1,320 gallons of oil, you may not have written spill response steps at all. Whether or not your facilities have SPCC Plans, consider the following tips, so you’re prepared for that late-night call.

Play Where Will a Spill Go?

If a spill occurs at one of your facilities, do you and your employees know where the spill will go? It’s typically easy to track flow paths at facilities in rural settings, but it can still be tricky if the site is pretty flat. Facilities in urban settings can be much more difficult to track. Sure, the spill will go into that storm sewer inlet 100 feet away from the transformer, but where will it go from there?

Critical hours can be lost during a spill because the response team is pulling manhole lids to determine the path of the spill. A little time spent upfront to determine where a spill would go can save a lot of time and headaches.

So take a peek down that inlet grate to see where the pipe goes. Or give a call to the local municipality. Many have GIS databases mapping the storm sewer system, and they can help determine the correct flow path that a spill would take. Knowing where to deploy your spill response materials is a critical step to spill response.

Conduct a Mock Spill Drill

Try conducting a mock spill drill, so your employees understand your spill response procedures, where you keep spill response materials, and how to deploy those materials. Running through these items on a PowerPoint slide is a good start, but you can’t beat the hands-on activity of actually opening up the spill kit and laying down some boom. A spill drill can also help you identify potential issues with your planned response techniques.

Review Your Spill Kits

Spills kits, especially those stored in maintenance shops, are prone to dwindling inventories over time. While raiding the spill kit to wipe up a few drops of oil isn’t a bad idea, it is important to replenish the spill response materials for an emergency. Make sure your spill kits are stocked by keeping an inventory list taped to the top of the spill kit or just inside the lid.  Check the spill kit against the inventory list regularly and replenish missing items. Each spill kit should include personal protective equipment (PPE) appropriate for handling the types and amount of chemicals that the kit is expected to control. PPE should be in good working order. Replace any PPE that is expired or showing wear.

It is also important to understand that absorbent materials come in many styles and work in different ways. Teach your oil-handling employees when to use granular absorbent, or pads and mats, and the proper way to lay booms and socks to prevent spills from seeping through the cracks. If you use “oil-only” absorbents, help employees understand the situations in which these are preferable over a universal absorbent.

Know When You Need to Call for Help

Do you know when you will call for outside spill response assistance versus what your staff can handle internally? The answer can vary by facility type, spill scenario, the experience level of your staff, and spill response materials and equipment that you have available. It’s important to think through different scenarios and know your internal capabilities and limitations, and when you need to call a spill response contractor.

Do you know who you will call? And do you have an agreed-upon response time established with the contractor? Depending on your facility’s location, it could take hours for a spill response contractor to reach the site. Knowing that lag time will help you plan for steps that your internal resources can take until the spill response contractor arrives.

Don’t let spill preparedness slip down your to-do list again. Use these techniques, so you are ready when the next spill occurs.



Jared Omernik has 12 years of experience helping electric utility companies with environmental compliance.  Jared has extensive experience helping companies with SPCC compliance and SPCC Plan preparation.  For questions about the SPCC Rule or spill response or preparedness, contact Jared at
or find the nearest Environmental Engineers on our website.

 

 

 

 

Posted by Diane Samuels at 6:00 am

July 6, 2020

An American Public Works Association (APWA) publication,

Responsible Solid Waste Management

Responsible Solid Waste Management

No single waste management approach is suitable for managing all materials and MSW streams in all circumstances. The USEPA hierarchy places emphasis on reducing,
reusing, and recycling as key to sustainable materials management.  Citizens and elected officials are often surprised how technically complex solid waste management is, and once aware of the basics they better understand the associated costs. Responsible Solid Waste Management with colorful infographics and easy-to-grasp explanations, helps readers understand solid waste management from beginning to end.

The concept of integrated solid waste management is increasingly being used by states and local governments as they plan for the future. This management practice includes the source reduction of certain MSW streams and the recovery of generated waste for recycling or composting. It also includes environmentally sound management through combustion with energy recovery and landfilling practices that meet current standards or newly emerging waste conversion technologies.

Available on the APWA website or reach Michelle Leonard (co-author) or an MSW engineer nearby contacting SCS Engineers at .

Learn more about Sustainable Materials Management here.

 

 

 

 

 

 

Posted by Diane Samuels at 6:01 am