Local governments feed tens of thousands to millions of dollars into their landfills long after closure to continue protecting the environment and people, compelling some of them to find creative ways to offset post-closure maintenance costs and to potentially profit. In some cases, these localities convert closed landfills to active, useful community assets.
Two Maryland counties are among recent SCS Engineers’ clients who are converting their idle properties into revenue-generators that serve their communities—they are installing solar farms, a growing trend on closed landfills. This is consistent with the U.S. EPA’s Re-Powering America’s Land Initiative that encourages renewable energy development on landfills.
Siting solar energy installations
These sites are fairly flat, open spaces conducive to solar installation, and most are near power lines and in regions where real estate is limited and high-priced. While properties like these Maryland landfills provide ideal locations and are inexpensive, the projects command a robust multidisciplinary redevelopment approach. It takes proficiency in environmental and civil engineering designs that protect natural resources while maintaining landfill integrity. Look for consultants with both landfill and brownfields experience who know permitting processes, are up on local regulators’ hot spots, and have established relationships with energy service companies.
One of these projects on a closed county landfill will be a 6-megawatt system, sprawling over 170 acres, the largest solar project on county property. It will provide inexpensive, green electricity to low- and mid-income families, enough to power 930 homes, as well as power county buildings.
SCS Engineers was selected by Ameresco, the solar developer for both projects, to develop the required state and local permits. As the solar developer, Ameresco is performing turnkey services for the projects, including solar design, interconnection with the utility for sale of the electrical power, and operation of the solar systems consistent with a long-term agreement with both of these counties.
“This project will provide financial relief to people of the county and also help fulfill our client’s goal to advance green infrastructure and operations in county buildings,” says Mike Kalish, SCS Engineers Project Manager.
A full understanding of local regulations and proven engineering designs are key to success.
Pulling together the detailed engineering components to secure the state permit and local approvals are involved processes. Knowing the regulatory programs and potential impacts of the design and construction are key to quick and efficient navigation of the approval processes. “The faster you can get through permitting, the better for communities who want access to power. The county officials have made this decision while Ameresco is investing significant capital, and we want to assist in project implementation to enable a return on that investment as soon as possible,” Kalish says.
He and his team key in on what regulators look for and their anticipated trigger points and work to stay a step ahead.
“Because of our familiarity from prior work at these sites, we were able to avoid costly site investigations, thereby saving time in the permitting processes,” Kalish says.
SCS supports clients not just in developing designs that meet regulators’ requirements but verifying, documenting, and demonstrating compliance with all aspects and considering the long-term needs. For instance, meeting the fire marshal’s codes showing the proposed roadway design meets stipulations around access into the site and around solar panel arrays.
“We also take great care to maintain the cap’s integrity and ultimately its closure certification,” Kalish says. “But we have a holistic plan that accounts for more than the cap to be sure that the landfill is in its existing condition once we complete the project. For example, the solar panels mount on a series of ballast blocks that sit on the ground surface; there is no digging involved.”
“We are attentive to mitigating impacts to natural resources and ecosystems, just as we are diligent in protecting the landfill.”
“There’s also adjacent forest we need to go through to connect to the electric grid. So, in our evaluations, we take into account design considerations and impacts to forest conservation regulations as well,” Kalish says. “Maximizing development while protecting sensitive resources, as well as valuable capital assets, is a priority.”
“That’s a quick turnaround considering the diligence and attention to detail that large solar projects require, but it’s important to our client, so it’s our priority too. This is when knowing local regulations well is most valuable. As important is that we have a long-standing relationship with the client where we know the site’s history – all key to being able to move quickly and safely.”
The SCS Engineers and Ameresco Team
SCS is working with Ameresco, one of the largest renewable energy project developers in North America. SCS and Ameresco have very complementary skills. Whereas SCS has decades of experience in landfill engineering and permitting, including varied post-closure uses for landfills such as solar, Ameresco has extensive experience with renewable energy to provide comprehensive turnkey services from electrical design to managing the interconnect to the grid to negotiating the purchase agreements for the sale of power to utilities. The teaming relationship is vital to executing successful projects from feasibility study to design, all the way to completion.
“Ameresco is a very big player in energy, and we are large in the landfill engineering space. Both companies have offices nationwide. We work on over one-third of the landfills in the United States. Together, we have an expansive reach and breadth of experience in every essential competency to offer successful solar projects on closed landfills,” Kalish says.
Solar Energy on Brownfields and Closed Landfills
The Virginia Composting Council is the state affiliate of the US Composting Council; its mission is to support the efforts and initiatives of the USCC and bring the practice of composting to more Virginians. The Composting Council is growing because of increased efforts by communities to divert food waste from disposal. Demand is growing with increased awareness of composting’s beneficial uses.
The Virginia Council, led by President Ryan Duckett of SCS Engineers, cites the obvious benefits of less waste going to landfills and lower greenhouse gas emissions in the environment. He also points out the jobs and business development potential and using compost for stormwater management, erosion control, and other green infrastructure as benefits. Expanded programs also offer the opportunity to collect edible foods for non-profits feeding many in need while diverting non-edible organics to composting.
The Council brings together manufacturers, municipal managers, organics collectors, researchers, and other compost allies in the waste industry. The group works to educate state regulators, local officials, and the public about composting’s value in a circular system. Members also help develop positions on regulations and legislation that affect composting and the market.
USCC has 13 state chapters that do local work to advance the composting industry alongside the national advocacy and programs. Without their on-the-ground education, attention to and work in regulations and legislation, and building networks of people in the industry, USCC could not be effective.
Vapor intrusion is a regulatory hot button gaining traction on states’ radar nationwide. This is driven by a growing understanding of how vapors travel through the soil into structures, posing health risks to occupants, coupled with research showing volatile vapors can be problematic even at very low concentrations.
As in California, conservative assumptions by regulatory agencies call for careful due diligence during the assessment process. These salient concerns recently brought a real estate developer in Monrovia to seek a professional engineer.
The client plans to convert a commercial property to residential use. But before moving forward, it needs to assess potential environmental issues associated with the property. That’s where SCS comes in, drawing on its concrete knowledge base in geology and chemistry—and leveraging its grasp of regulatory requirements.
The work in Monrovia entails a detailed soil vapor assessment, looking for volatile organic compounds (VOCs); the discovery at this site came as little surprise to Julio Nuno, Senior Vice President, and Project Director, as these constituents are often found during evaluations of this kind.
Assessing for VOCs
In this case, the soil contained eight VOCs, some at non-compliant levels. The good news is, after an extensive, multi-step vetting process, Nuno and his team came up with a relatively inexpensive solution to tackle a potentially daunting problem.
“As part of the soil vapor assessment, we compare concentrations we find on-site to screening levels established by the Department of Toxic Substances Control. We often see levels in exceedance of regulatory thresholds, particularly in industrial areas with releases that can travel from groundwater to soil into the building through the slab,” Nuno says.
Most prominent at the Monrovia site were two chlorinated compounds that have been used as solvents in industrial applications: tetrachloroethylene, also called PCE, and trichloroethene, or TCE. PCE is commonly present in industrial settings and communities as drycleaners widely and routinely used the chemical for decades.
Nevertheless, the work begins even before confirming VOC levels and other specifics around these compounds. The first step is a Phase I Environmental Assessment looking to see if past use of the property or surrounding property may have left a significant environmental impact. The SCS team discovered the adjacent property had a release of VOCs they identified as a ‘recognized environmental condition,’ meaning it needs further evaluation using a Phase II to determine if vapors could migrate onto the client’s property.
During the Phase II Environmental Assessment –the collection of soil and soil vapor samples –the SCS team gets even more specific, determining what’s present, specific locations, what degree of contamination, and what these findings mean for redeveloping the property and its final use.
“We confirm subsurface concentrations and if they exceed state screening levels, and if the site represents a potential risk for future residential use. The information informs our possible solutions to mitigate any migration of certain VOCs into the building and the indoor air,” Nuno explains.
Redevelopment Goals – safety and cost containment
Safety comes first, but containing project costs is a priority, which comes down to knowing design options, how to piece components together with both function and economics in mind. At this site, achieving safety and controlling costs centered largely around looking at the mandatory infrastructure– a ventilation system for a planned underground parking garage to prevent accumulation of carbon monoxide and other vehicle exhaust emissions.
“We knew the underground parking would require a ventilation system. It makes sense to look at the parameters associated with that design to verify if it serves dual purposes to ventilate the garage and mitigate the potential for VOCs to enter the building,” Nuno says.
By studying air exchanges that would occur, the number of times replacing air-containing pollutants with cleaner air per hour, Nuno gets his answer. “We determined that a second, separate system would not be necessary for sufficient ventilation; the assessment enabled us to confirm vapors would not travel into the residential portion of the building.”
The client can save $50,000 to $75,000 in capital expenses upfront while achieving their safety goals and avoids ongoing operations and maintenance costs for added infrastructure.
An added layer of protection
Identifying the issues for site developers and their tenants, then plotting the best course of action to ensure safety and regulatory compliance takes experience and knowledge. SCS devises a soil monitoring plan, alerting developers of indications of potential contamination to the soil, of odor, or anything unusual that could suggest an environmentally adverse condition. The plan advises on how to respond should there be an unexpected condition adding a further protection layer.
“It’s essential that an engineer understand the applicable federal, state, and local standards for completing assessments, as well as understand regulatory stipulations. You must also know the variations in those stipulations to effectively design a sustainable plan,” Nuno says. “In Monrovia, we comply with the Department of Toxic Substances Control requirements, the requirements of the Los Angeles Regional Quality Control Board, and others. Each has specific stipulations for evaluating each contaminant. So, we stay on top of which rules apply to which location,” he says.
Nuno has submitted a draft report for review by his client and its legal counsel; he’ll meet with them to discuss findings and explain their meaning. SCS includes an executive summary, explaining in plain language what is salient; often, a backup report includes thousands of pages. “It’s a lot of complex information, so we work on the language,” Nuno says.
“It’s important to paint an accurate picture and use terms that all parties, whether the client, investors, or other stakeholders understand. These redevelopments are major projects with many due diligence considerations. We want to provide accurate findings and recommendations that the client and their advisors can digest to help them with their decision making.”
More resources:
SCS Engineers provides comprehensive environmental due diligence services nationwide and announces two new SCS National Experts to lead the expanding practice. Vice President Michael Miller and Project Manager Justin Rauzon take the helm to meet the expanding demand for these environmental services. Mr. Miller is in SCS’s Omaha, Nebraska location and Mr. Rauzon in the Long Beach, California headquarters office. Both professionals work nationwide and continue to support their regional clients in their new positions.
Miller focuses on comprehensive environmental management and consulting for private and federal clients. Project solutions typically involve solid waste, hazardous waste, environmental assessment, compliance audit, feasibility studies, environmental permitting, and training. His environmental due diligence experience includes work at fuel storage and vehicle maintenance facilities, petroleum retail sites, agricultural, chemical processing, and pharmaceutical manufacturing plants, active and closed landfill sites, abandoned chemical disposal sites, and numerous dry cleaner sites.
Mr. Rauzon has a diverse background in biological and environmental sciences and regularly performs environmental assessments and compliance audits at North American sites. Rauzon’s technical and management experience is with soil, soil vapor, and groundwater investigations on industrial, commercial, landfill, greenfield, and residential properties. He has extensive experience with environmental laws and regulations in the United States and Mexico.
Both work through all project phases, from developing cost estimates to implementing due diligence tasks ranging from site assessments to full remediation. SCS Engineers’ Environmental Due Diligence and All Appropriate Inquiries practice is comprehensive. The practice’s services cover Environmental Insurance Claims and Underwriting Support, Financing and Company Acquisition Support, Property Inspections and Abatement, Property Transactions, and Solid Waste Management Financing.
SCS’s Brownfields and Voluntary remediation engineers rely on the due diligence practice and developers, contractors, municipal officials and city managers, and advisors such as banks, insurance firms, and attorneys to private and public entities.
SCS Engineers Vice President Ashley Hutchens is now the Environmental Services Director for its Long Beach and Las Vegas operations. Besides managing her current projects and clients, Hutchens will manage the environmental professionals and technicians in each city. She is responsible for allocating resources for business development, project management, and coordinating activities with other SCS offices nationwide.
“Ashley’s proven capabilities solving environmental challenges for industries will serve our Long Beach and Las Vegas clients well,” said Julio Nuno, SCS Senior Vice President.
Hutchens has 18 years of experience in property evaluation and due diligence, site assessment, characterization, remediation; vapor intrusion assessment and mitigation; and hazardous waste management. She has led hundreds of projects, including all phases, from the development of cost estimates for site assessment, mitigation, and remediation, to groundwater monitoring and sampling, preparation and review of final reports, interfacing with regulatory agencies, and management of all aspects of projects, staff, and various subcontractors.
SCS Engineers’ environmental solutions directly result from our experience and dedication to solid waste management and other industries responsible for safeguarding the environment. For more information about SCS, please visit us at www.scsengineers.com, or contact .
Virtual Conference on April 15, 2021, recording on YouTube
Recorded at the Virtual Conference on April 15, 2021, this recording is available online.
Moderated by Michelle Gluck of Cornell Cooperative Extension Dutchess County, the panel discusses waste reduction, composting, anaerobic digestion, compost use, carbon sequestration…so many avenues to reduce climate impacts through organics management.
We’ll hear about New York State’s Climate Leadership and Community Protection Act, the progress of its waste advisory panel, and from a Climate Smart Community on how they’re planning to manage their organics with greenhouse gas emissions in mind.
Panelists include:
Suzanne Hagell, Climate Policy Analyst, New York State Department of Environmental Conservation
Molly Trembley, Environmental Engineer, NYSDEC
Greg McCarron, Vice President, SCS Engineers
Landfill operators forever work to stay on top of a diverse and complex mix of leachate contaminants—heavy metals, ammonia, and biochemical oxygen demand (BOD), among them; but lately, they think about even more. For one: how to keep concentrations of these contaminants within wastewater treatment’ plant’s tightening discharge limits. Add to this concern the possibility of more compliance pressure as the constituents’ list on regulators’ radar grows. From microplastics to PFAS and PFOA, the latter sometimes called the “elephant in the room” –some operators are preparing for what may be down the pike.
Among strategies, some are looking at are on-site leachate treatment options, and there are several. Finding the most fitting, sustainable, and cost-effective one takes vetting. This continuing blog series explores studies conducted by SCS Engineers for operators nationwide. Here you will get an inside look at what these leachate management experts found, what treatment system they recommend in each scenario, and why.
A Solution to a Nebraska Landfill’s Rising Leachate Volumes
A Nebraska landfill needs to manage its rising volumes of leachate, causing disruptions to operations. The liquid goes into a 20,000-gallon tank, is pumped into a tanker, and is driven to the municipal wastewater treatment plant. The tank was filling so fast that the operator has trouble staffing and scheduling its few commercial driver’s-licensed operators to haul it. This logistical task has become a near-daily necessity. Sometimes the liquid level indicator will go off on the weekend. Management has to move quickly, sometimes on a dime, find someone to come in, and pay overtime.
“The staffing challenge is the main issue that brought the operators to SCS. They want to understand the whole leachate management structure better, and as we answer their questions, they want to know how we can improve the overall system in the long-term, says Zach Mahon, the SCS staff professional who works on the project. “After an extensive assessment, we provide options whereby the operator no longer has to pump leachate to a holding tank and then truck it to the wastewater treatment plant. And we provide site-specific recommendations to take their leachate management practices further,” he says.
Mahon and the SCS team of leachate management experts headed to the landfill to talk to operations staff and get their historical generation records, which is the basis they start with for their assessment. “We correlate the landfill information with our research to determine yearly generation figures as well as a peak generation number over the landfill’s projected life. This site is expanding, and we want to size the equipment so that when it reaches capacity, the system can handle the higher volume,” Mahon says.
SCS plans in other ways to ensure the recommended technology will take its client into the future on solid footing. For instance, accounting for the reality that operators may one day have to remove per- and poly-fluoroalkyl substances (PFAS) to send their multi-thousands of gallons of leachate to their wastewater treatment plant each year. Operators are keenly aware that utilities and regulators are looking with more scrutiny at PFAS and other emerging contaminants of concern.
Through due diligence, SCS engineers came up with three treatment options. Mahon explains each:
Install a leachate force main. This system includes a pipe with a pump that pushes the liquid through the force main, directly to the sewer line and, ultimately, to the municipal treatment plant. The pump kicks in automatically, negating the need to have drivers in the wings at all times. This system is quick to build and fairly simple to operate. It is the least expensive of the modifications that SCS vetted.
Install a leachate evaporator, which heats the liquids and evaporates the water molecules. This system reduces leachate volume by 90%. Managing liquids on-site eliminates dependency on drivers, but on the wastewater treatment plant too. The gas-fueled system is suited for sites with surplus landfill gas to help cut their operational costs.
Install a reverse osmosis treatment (RO) system where material passes through a membrane, which separates contaminants. RO treatment can reduce contaminated water by 90%, typically rendering it clean enough to discharge directly to surface water with appropriate permits. Or, it can be discharged to the city sewer, eliminating the permitting step.
“For each leachate treatment option, we looked at cost, the feasibility of short- and long-term implementation, and regulatory acceptance,” Mahon says. “We deliver the data with these priorities in mind, make our recommendations, and leave it to our client to decide.”
What did the SCS team recommend in this scenario?
“We suggested the force main. It solves the primary operational issue around staffing. And the economics of this comparatively inexpensive system make sense in these times when landfills are dealing with astronomical leachate management costs, among other increasing operating and capital expenses,” he says. This option does more than meet the client’s most immediate needs at a minimal cost. It provides the option to upgrade should regulators’ requirements around leachate change or should the wastewater treatment plant tighten its discharge limits. We design the modular system to add on reverse osmosis if necessary in the future. Thus, we help ensure that our client will continue having a home for its leachate.
A value-add, regardless of the operators’ decision, is more knowledge. SCS clients have a deeper understanding of industry standards. They are also more aware of how the industry is shifting in managing leachate and how these shifts could affect them. We follow up with technical bulletins explaining proposed and final federal rules in plain language influencing their operations, deadlines, and how to provide feedback to the appropriate agencies.
“We provide a lot of data to continuously inform our clients and to help them compare their operational costs now to what they would be if they invest in a new leachate management strategy. We ensure they fully understand each option’s capabilities to decide if it pencils out for their budget and operations. They have what they need to make informed decisions for a hands-off system to take them into the future,” Mahon says.
Leachate and Liquids Management
Cities like Oviedo, Fla. are investing in the cleanup of defunct brownfield sites, converting even highly contaminated properties from liabilities to assets that pump economic vitality into their communities. And municipalities are getting reimbursed for doing so. But these ambitious undertakings require the expertise of professionals with strong environmental engineering and remediation backgrounds and an understanding of federal and state regulations aimed to protect public health and the environment.
This spring, after over two years of working closely with SCS Engineers and the development team, the City of Oviedo will unveil its redevelopment project: a 3.7-acre public park with a walking and jogging trail. The loop trail will be part of a larger trail system interconnecting through the City and the Cross-Seminole trail, with the latter running throughout the county.
The walking and jogging path surrounds a pond with a dual purpose: to serve as an added feature to this peaceful retreat and part of an enhanced stormwater management system that will allow business owners to convey drainage from their properties via an underground stormwater management system. Along the park perimeter, historical displays will tell the story of the nearly century-and-a-half-old City’s past.
SCS helped the City navigate regulatory issues associated with redeveloping environmentally impacted land, ensuring safe and environmentally sound practices, and maximizing financial reimbursement through the Florida Brownfields Program.
In the 1940s, the site operated as a farm but lay idle and overgrown with vegetation decades after. When SCS came in to complete the environmental assessment, the team confirmed that years of pesticide application did leave arsenic behind in the soil.
“It appears that the pesticides were used appropriately, but with the change in land use and to meet the state’s environmental criteria, we need to address the residuals to redevelop the property as a park. It would otherwise remain as unusable land without this cleanup,” says Kirk A. Blevins, SCS senior project manager.
SCS completed site assessment activities according to Chapter 62-780 FAC, which includes additional testing to delineate the extent of arsenic-impacted soil further and evaluate groundwater conditions. Assessment activities indicated that while not impacting groundwater, the soil contained arsenic above acceptable regulatory levels. In its next step, the team designed a remedial action plan with multiple considerations for success.
“Given that the site would include both a stormwater management pond and a public park, we recommended that rather than cap the soil to reduce potential exposure, the City meet the strictest cleanup criteria. This option is the most protective of human health and the environment,” Blevins says.
The plan included removing approximately 47,000 cubic yards of arsenic-impacted soil, then placement of clean import fill for areas open to the public. Blevins and his team proposed excavating to the property boundary, and they provided technical guidance to the City contractor on how to efficiently and safely execute this undertaking. “It was important to excavate to the property boundary to assure removal of the impacted material so that the City would receive unconditional closure approval from the regulatory agency,” explains Blevins.
Concise reporting of the work is key to securing that approval, so SCS documented the excavation of impacted soil to the appropriate depths and lateral extents, managing it appropriately onsite, and transporting it to an approved landfill for disposal.
The team worked with the City’s environmental counsel to bring the site into the Florida Brownfields Program and prepared its voluntary cleanup tax credit (VCTC) applications for submission to the Florida Department of Environmental Protection (FDEP). All expenses and payment, confirming the expenditures “integral to rehabilitation,” are documented. With this validation, the City of Oviedo is getting back about half of its $1,432,000 related investment. It will receive another 25% bonus once FDEP issues a letter stating that no further action is required.
Documentation and communication with the state regulators is an ongoing process requiring a detailed review of contractor proposals, invoices, pay applications, proof of payment, and a summary of progress each year over the project’s life. “In particular, a line-item review of invoices can sometimes establish additional actions that are critical to remediation that otherwise might have been overlooked and not captured. This process is vital to maximize reimbursement,” Blevins explains.
Cost, as always, is a client priority. So, SCS and the remedial team focused on minimizing offsite disposal of the impacted soil, proposing over-excavating the pond, using the unimpacted soil as the onsite fill, and placing a portion of the impacted soil at the pond’s bottom.
“This was possible because testing indicated that the impacted soil would not leach arsenic into the pond water at a rate that would adversely affect water quality. We confirm that arsenic concentrations are below the strictest regulatory level before any soil from over-excavating the pond can be of beneficial reuse onsite. Safety of people and environmental protection always comes first,” Blevins says.
The ultimate outcome: Oviedo has a regional stormwater pond suited for potential commercial operations to use for drainage, maximizing available land for economic development, as well as a recreational park for the community and visitors.
SCS’s technical expertise was crucial to successfully remediating this site, attests Bobby Wyatt, Public Works Director at City of Oviedo, Florida.
“The team easily navigated and sped up the permitting process for the arsenic removal and provided continuing assistance with monitoring during construction. The process for completing the specific remediation/permitting was unfamiliar to City staff, and SCS provided efficient and competent assistance to get us where we needed to go.
Their experience provided a sense of confidence that we were going to be able to make the park project successful,” Wyatt says.
SCS has worked on brownfields projects and voluntary remediation across the U.S. for over 45 years. We convert once nonproductive commercial and industrial properties into revenue-generators and affordable housing.
Resources:
Brownfields and Voluntary Remediation
Not too long ago, SCSer Gomathy Radhakrishna Iyer thought she’d become a mechanical engineer but decided to go down another path at her father’s coaxing, and she’s never looked back. Today she is a Civil & Environmental Engineering Ph.D. and has become deeply entrenched in the world of landfills—human-made formations that she calls “beautiful.”
Dr. Iyer’s work spans research and engineering projects in landfill gas emissions reduction, landfill design, and leachate management. She’s also keeping up with PFAS to be ready for what may lie ahead around these emerging contaminants. “What I’m most into these days is researching and helping clients select leachate treatment systems and doing landfill expansion designs. It’s so mentally rewarding when you find solutions for the client’s problems. They are happy, and you are happy,” says the SCS staff professional.
She is known by more than her work family. Gomathy is a published researcher and speaker, most recently presenting at the Global Waste Management Symposium in February 2020. Her presentation covered one of her pet topics, her Ph.D. focus: using grass clippings and biosolids as biocovers to remove methane from landfills.
Pre-COVID, she spent many of her days in the field. Lately, she spends a little more time anchored to her computer in her home office. There she typically works on a few spreadsheets at a time, maybe as part of a gas emissions report, a stability analysis, or settlement analysis. Then she shifts her focus to her design drawings. Dr. Iyer still manages to break away to put on her PPE – her hardhat, safety vest, and steel-toed boots. She happily drives off in a company truck to the landfill, lugging field parameter testing probes and a 10-pound ISCO to collect leachate samples; or do other fieldwork like locating LFG wells and pipes or other features that help her design.
In the summers, it gets scorching hot. And the winters can be bone-chilling cold, especially for a woman who spent most of her life in India, where she was born and raised. In her last years there, she studied the transport of heavy metals through groundwater. Then, it was on to the University of Texas, Arlington, where she earned her Ph.D. and became set on finding work at SCS, coming on board in 2019.
Among her earliest challenges was communication. “Sometimes I would be in a meeting or having lunch with my colleagues, and they would bring up baseball or other games or a Netflix series. They were new concepts to me, and I couldn’t relate. While I speak English, I was unacquainted with the vernacular. I was like, what is Super Bowl? I thought maybe it was something very big that people eat from,” she recalls. That does not stop a researcher.
Finding a way to become better acclimated became a project of sorts. She started spending weekend downtime in front of the TV to learn about these American pastimes. Baseball still isn’t her first love, but she’s happy to say, “In 2019, I went to my first Washington Nationals game with a big group from SCS, and I had at least some knowledge of what was going on.”
The ambitious civil engineer has pushed past another on-the-job challenge—one brought on by the impulse to know every detail she can nail down before setting to work. “Since I’m from a research background, I tend to dig to the very bottom to try and know the problem completely. Sometimes it’s a good thing. But I’ve had to be conscious of time constraints, gain an understanding of the minimum required to do the job well, and move on,” she says.
What first brought her to the United States was her husband, Ramesh Padmanabhan. He was working on a Ph.D. at the University of Texas at Dallas while she was studying in India, so the relationship truly began as a long-distance one. They got to know each other through a combination of old-world traditions and 21st Century channels. “Ours was an arranged marriage. Our parents introduced us, and for the first year, we met up and talked on SKYPE,” Dr. Iyer recollects. He’s a molecular and cell biologist and sometimes her consultant too.
“In my job, I need to know the biology and chemistry of microbes as they are responsible for breaking down waste, and he is my encyclopedia. I don’t have to Google as much when he’s around.” She adds: “I can’t complete my story without talking about my brother who has given me unconditional support and career advising through my life. These two men are pillars of my life.”
As a woman civil engineer who’s all about waste, she’s in the minority, but she doesn’t feel as if she is because women are moving into waste engineering. She’s one of four women on an eight-person team, who she says is “like my family. And my supervisor is a great supporter of women in STEM (science technology, engineering, and math).”
She hears from many newly degreed civil engineers, including “young ladies” with questions about waste management. They read blogs about her work that originated on SCS’s website and are on social media. “These graduates want to take their career to the next level, and they have a lot of questions about how to start solving waste issues,” she says. She tells them that solid waste management is one of the best and most stable industries they can choose and that the pandemic has driven that point home. “We are reminded through COVID that waste management is an essential business, and there will always be jobs to support it,” she says.
What Dr. Iyer loves most about her job is what she and her team imagine and draft in drawings, keeps developing, and in time, is built. “It’s like giving birth to a baby. Very exciting,” she says. Her groundwater contamination remediation work got her interested in PFAS, even before she finished her studies. “I had a lab mate in school who did PFAS research. That got me curious about these emerging contaminants. I’ve stayed vigilant to keep up with what’s happening with regulations and treatment options under research. If regulations now under consideration are implemented, our clients will have to start thinking more proactively about addressing PFAS. So, we need to learn more on a holistic level about what these contaminants can do and the best way to treat them.”
She tells the story of how her venture into civil engineering started with her father. “He wanted to be a civil engineer himself but was the eighth son, so his parents couldn’t afford tuition, and in India, you don’t go to college once you are grown with a family,” she explains. He wanted his daughter, already drawn to engineering, to pursue what had been his dream and said he thought it would suit her better than the direction she was leaning. “Had I studied mechanical engineering as I’d been thinking of doing, I would not have come into waste.” She is happy with where she’s landed.
“When you work all day and still are not tired –you still enjoy it and are happy to contribute to something good—that’s how you know it’s the right fit.”
Somshekhar (Som) Kundral is SCS Engineer’s most recent go-getter to receive the honor of a Waste360 40 Under 40 Award. Described by his supervisor, SCS Vice President Bob Speed, as ‘humble, hungry, and smart,“ Kundral has spent no time in the slow lane.
He joined SCS as a young engineer in 2010, and quickly worked his way up, reaching a senior management position in a few years.
He now oversees multiple remediation projects, from small to multimillion-dollar jobs, taking ownership of environmental aspects of redevelopment, from remediating groundwater contamination to addressing landfill gas problems as challenges. He has come up with unique and far-reaching solutions through collaboration with his team to help clients achieve their business goals.
But before telling the story of Kundral, the senior-level engineer and project manager, let’s start with an earlier chapter.
“It’s an interesting and kind of odd story,” he recalls. “A friend asked me to drive him to a job interview as he did not have transportation. The HR person, for some reason, asked both of us to interview [having heard I was an engineer too].
“I was dumbfounded and a little nervous as I was not prepared. I had to download my resume from my yahoo ID quickly… I thought, what have I got to lose? It’s a good engineering job with a large real estate company.”
He got the job and continues to seize practically every opportunity before him, growing from each one. Today at SCS, Kundral oversees several redevelopment projects, including a 500-acre landfill conversion to a large business park, which received the American Council of Engineering-Florida and the Environmental Business Journal awards.
“The landfill had a lot of environmental and geotechnical issues, with the largest ones around groundwater contamination and stormwater management. They are typical redevelopment challenges we need to overcome, and in this case, they were on a larger scale,” he says.
As the intricate strategy evolved, Kundral, working with his project advisor, Senior Vice President Eddy Smith, called many multidiscipline group huddles. Kundral has assessed, reassessed, stopped, and restarted. And he has brought in more engineers to pump up the team’s expertise and take this project to the next level.
“We are now halfway through. And I tell you, I don’t think I should have gray hair yet, but I have some now. Still, I feel so relieved because we have the formula to make this work. “We did it by integrating the groundwater and stormwater management systems,” he says.
The integration resolves two big issues: It, of course, addresses groundwater contamination. But Kundral and the team also want to maximize areas for redevelopment, and the design supports this goal as it eliminates the need for stormwater ponds.
To him, the job is as much about open communication and teamwork as technical talent.
“At the end of the day, no matter what we do, we deal with people. I believe in staying in front of our clients, explaining what to expect when, and I continually engage with staff who support me.” With this business park conversion, as they dove deeper, they saw more intricacies. “It was important to help our client see we were not simply trying to catch up; for them to understand we had to give more time and attention to do the job as best as it can be done.”
From age 28, when he came to SCS, Kundral was keenly aware that there was potential to do plenty and wanted to take on more. “I’m just curious to see what I can get into,” he says. He began with smaller projects, each with one or two focuses. Little by little, he could connect more dots. “I could start to see the big picture and wanted to know more about how to pull the whole project together,” he says.
While he mostly oversees redevelopment projects, he has also supported industrial waste permitting and compliance reporting endeavors. He describes the latter projects as straightforward.
“I prefer the more involved brownfields projects; there is more to learn when overseeing the work. Each site is unique, with different challenges. And each time, what you discover and how you approach it is different.”
Doing the work he loves has come with tradeoffs, such as giving up kayaking and cutting back on trips to the beach—once his favorite pastimes. “They’re fun, but they are day- and night-long ventures. By the time I got home, Saturday was gone. And I needed to catch up on work emails at night and plan for the next week.”
He does find a few hours some weekends for another interest—photography—heading to the zoo or state parks with his wife, Anjana, who shares his passion for watching out for a good “Kodak moment” and capturing it.
Nevertheless, figuring out how to fix problems is still his greatest passion, further maturing from experience. When asked if he could be someone else for a day, who that would be, he thought for a while, then said: “I would love to be myself again but be able to watch as a third person and make note of the scope of improvements I have made over time. From that, perhaps I can learn even more.”
Kundral speaks of three people who helped shape him: his grandfather, father, and father-in-law.
“Growing up watching my grandfather’s resilience helped me learn how to manage hard situations.
From my father, I learned to view situations in ways to understand people better. This has helped shape my thoughts to improve my communication.
From my father-in-law, I learned the importance of humor and gained a sense of humor. This is a good thing for lightening up situations and reducing stress.”
Kundral will take on challenges because it’s part of getting to the end goal. And reaching that goal is what sparks him. He goes back to the 500-acre Florida brownfield to illustrate. “This property is being converted to a business park with great companies operating there, like Home Depot and Boeing. So, our client is creating a legacy. The project creates jobs. It brings in taxes. It improves environmental conditions. We are part of it, and that excites me.”
Kundral is in good company. These other SCS Young Professionals are past 40 Under 40 Award recipients. Like Kundral, they work diligently, solving an array of complicated solid waste challenges. SCS Engineers is very proud of our YP’s award-winning accomplishments for their clients and their contributions to their communities’ health and welfare.
Steve Linehan is a Senior Project Manager who oversees solid waste and environmental services projects from SCS’s Oklahoma City and Wichita offices. Linehan has a broad range of expertise, including solid and hazardous waste regulations, landfill design, stormwater modeling design, and remedial action plans. He holds professional engineering licenses in Kansas, Missouri, Nebraska, and Oklahoma.
Srividhya (Vidhya) Viswanathan, Vice President, is recognized for her innovative engineering plans and designs of traditional solid waste and renewable energy programs. Viswanathan, Southwest Director of Engineering, continues consolidating and integrating engineering operations to provide more streamlined and efficient services. She leads solid waste engineering operations in California, Arizona, Nevada, Utah, and New Mexico.
Solavann (Sol) Sim, a Project Director and OM&M Western Regional Manager for SCS Field Services, has expertise in all facets of landfill operations, including landfill gas and liquids management. His teams keep landfills safer and running within compliance. He is a licensed professional engineer in Alaska, Arizona, California, Colorado, Hawaii, Montana, New Mexico, Nevada, Oregon, and Utah.
David P. Hostetter, Business Manager for SCS RMC® (Remote Monitoring and Controls), works in environmental engineering and technology. He serves clients by leveraging technology to reduce business and industry environmental impacts. His environmental solutions reduce potential greenhouse gas emissions and lower environmental risk from landfills, thus protecting workers and local communities.