environmental compliance

December 19, 2019

Reprint of USEPA Press Release dated today.

WASHINGTON (Dec. 19, 2019) — Today, the U.S. Environmental Protection Agency (EPA) took another key step in implementing the agency’s PFAS Action Plan by announcing a new validated method for testing per- and polyfluoroalkyl substances (PFAS) in drinking water. This new validated test method complements other actions the agency is taking under the Action Plan to help communities address PFAS nationwide.

“EPA’s important scientific advancement makes it possible for both government and private laboratories to effectively measure more PFAS chemicals in drinking water than ever before,” said EPA Administrator Andrew Wheeler. “We can now measure 29 chemicals, marking a critical step in implementing the agency’s PFAS Action Plan—the most comprehensive cross-agency plan ever to address an emerging chemical of concern.”

EPA’s new validated Method 533 focuses on “short chain” PFAS, those PFAS with carbon chain lengths of four to 12. Method 533 complements EPA Method 537.1 and can be used to test for 11 additional PFAS.

Method 533 accomplishes a key milestone in the EPA PFAS Action Plan by meeting the agency’s commitment to develop new validated methods to accurately test for additional PFAS in drinking water. Method 533 also incorporates an analytical technique called isotope dilution, which can minimize sample matrix interference and improve data quality.

 

 

 

 

Posted by Diane Samuels at 4:59 pm

December 19, 2019

Voting for the Old Dominion Chapter’s 2020-2021 Board of Directors ended December 13, 2019. After tallying the votes, the following professionals were elected as new Directors, including:

  • Ryan Duckett of SCS Engineers
  • Clarke Gibson of Region 2000 Service Authority
  • Henry Strickland of Southeastern Public Service Authority (SPSA)
  • Tim Torrez of Republic Services

Congratulations!

Ryan Duckett is a Project Professional working out of SCS’s Midlothian, Virginia office. He is responsible for Sustainable Materials Management, or SMM, solid waste facilities and municipal planning solutions. Ryan also supports environmental engineering projects related to permitting, compliance, regulatory reporting, landfill gas modeling, construction quality assurance (CQA), and pollutant emission inventories at solid waste management facilities. Ryan is an active member of the SCS Engineers Young Professional Program that connects our young professionals with others providing community support, altruistic efforts, mentoring, networking, and social activities.

Virginia’s Solid Waste Association of North America (SWANA) organization works to advance environmentally and economically sound municipal solid waste management in Virginia. The “Old Dominion” Chapter as it is known consists of over 300 professionals actively working in the solid waste field throughout the Commonwealth. The membership represents the largest cross-section of solid waste managers, operators, and consultants in Virginia.

The Chapter seeks to foster networking and cooperation among solid waste professionals, including regulators and provides educational opportunities to enhance members’ expertise in the solid waste management field. Members carry out a variety of activities and programs to establish innovative research programs in the publics’ interest, scholarships and technical assistance. Learn more about membership on their website – http://www.swanava.org/.

 

 

 

 

 

Posted by Diane Samuels at 6:03 am

December 18, 2019

REPRINT OF USEPA PRESS RELEASE

WASHINGTON (Dec. 3, 2019) — Today, the U.S. Environmental Protection Agency (EPA) is announcing several actions to clarify and improve New Source Review (NSR) permitting requirements. These Clean Air Act actions are part of a suite of measures EPA is taking to modernize and streamline the NSR process, without impeding the Agency’s ongoing efforts to maintain and enhance the nation’s air quality. These actions will improve regulatory certainty and remove unnecessary obstacles to projects aiming to improve the reliability, efficiency, and safety of facilities while maintaining air quality standards.

“NSR reforms are a key component of President Trump’s agenda to revitalize American manufacturing and grow our economy while continuing to protect and improve the environment,” said EPA Administrator Andrew Wheeler. “NSR regularly discouraged companies from investing in and deploying the cleanest and most efficient technologies. Through the Trump Administration’s efforts, EPA is providing clarity to permitting requirements, improving the overall process, and incentivizing investments in the latest energy technologies.”

“For too long, New Source Review permitting requirements stifled job creation, hampered innovation and slowed the ability to modernize critical energy infrastructure. Worse, in previous administrations, the permits were weaponized, so liberal activists could delay key projects,” said U.S. Senator Jim Inhofe (OK). “New Source Review hasn’t been updated in over four decades—making it hard to integrate new technologies into our energy infrastructure. I’ve worked for years to modernize the review process, and applaud today’s action by President Trump and Administrator Wheeler to streamline the NSR permitting process.”

“One of my consistent frustrations with New Source Review is what seems to be a perverse incentive away from innovation. Thank you to Administrator Wheeler and the Trump Administration for recognizing this and finalizing these positive reforms,” said U.S. Senator Kevin Cramer (ND). “The EPA’s actions provide certainty while restoring the proper scope of the Clean Air Act.”

“I applaud the EPA for taking further steps to reform the New Source Review permitting program. NSR’s burdensome process can impede upgrades that would actually increase efficiency and improve air quality. The EPA is moving toward a better NSR program that streamlines the process without sacrificing environmental protections,” said U.S. Representative Morgan Griffith (VA-09). 

“I applaud Administrator Wheeler for implementing a strong regulatory reform agenda at the EPA. Today’s actions are a solid first step in the right direction to reform the NSR permitting program. I look forward to continue working with the Trump Administration to further reform NSR and allow America’s industry to make their units more reliable and efficient, while maintaining strong environmental standards,” said U.S. Representative Andy Biggs (AZ-05).

“President Donald Trump continues to deliver on his promise to cut burdensome regulations that strangle American manufacturing and energy development. These improvements to the New Source Review (NSR) permitting requirements will protect our air quality, while incentivizing businesses to grow and expand. I look forward to continuing to work with President Trump and Administrator Wheeler to cut needless regulations and create American jobs,” said U.S. Representative Alex X. Mooney (WV-02).

“This Administration is clearing the path for manufacturers to invest in more energy efficient technologies that conserve energy, reduce emissions, and keep U.S. manufacturers competitive,” said Portland Cement Association President and CEO Mike Ireland. “For energy-intensive industries like cement, strategic investment in energy efficiency and emissions reduction are key components of any long-term climate and sustainability strategy, and EPA’s New Source Review reforms announced today help unlock new opportunities for sustainable operation.”

Final Guidance: Revised Policy on Exclusions from “Ambient Air”

After considering public comments, EPA is issuing final guidance, identifying the sort of measures which EPA may take account of in determining whether a source owner or operator has precluded the general public from having access to its property. Where access is precluded, the portion of the atmosphere above that property is not considered “ambient air” for the purpose of conducting air quality analyses under the Clean Air Act. The guidance updates EPA’s policy to recognize that a variety of measures may be considered effective in keeping the public off a source owner/operator’s property. These measures, which account for advances in surveillance and monitoring, depend on site-specific circumstances and continue to include, but are now not solely limited to, fences or other physical barriers. State, local and tribal permitting authorities have the discretion to apply this guidance on a case-by-case basis. The regulatory definition of “ambient air,” as stated in 40 CFR § 50.1(e) to mean “that portion of the atmosphere, external to buildings, to which the general public has access,” remains unchanged.

Final Guidance: Interpreting “Adjacent” for New Source Review and Title V Source Determinations in All Industries other than Oil and Gas

EPA has also recently issued a final guidance that revises the agency’s interpretation of when multiple air pollution-emitting activities are located on sufficiently “adjacent” properties to one another that they should be considered a single source for the purposes of permitting. To determine what activities comprise a single source under the NSR and Title V air permitting programs, three factors must be satisfied: the activities must be under common control; they must be located on contiguous or adjacent properties; and they must fall under the same major group standard industrial classification (SIC) code. In this guidance, for all industries other than oil and natural gas production and processing for which there is a separate set of rules and to which this guidance does not apply, EPA adopts an interpretation of “adjacent” that is based on physical proximity only. The concept of “functional interrelatedness” would not be considered by EPA when determining whether activities are located on adjacent properties. This interpretation should help clarify and streamline the permitting process.

Additional NSR Proposals

EPA also recently issued a proposal to address minor errors that have accumulated over time in four NSR regulations. While these minor errors, such as outdated cross references and typographical errors, have not materially impeded the effective operation of the NSR program, EPA believes that it is important to remove such errors from the regulations in order to provide regulatory certainty and clarity. The proposed corrections are all considered to be non-substantive and are intended to provide clarity and precision to the NSR regulations without altering any NSR policy or changing the NSR program as a whole.

EPA is also proposing to remove from the NSR regulations various provisions, such as certain “grandfathering” provisions, that, with the passage of time, no longer serve any practical function or purpose. EPA will be taking comment on this proposal, which will be published in the Federal Register.

More information on these actions and other NSR improvements are available at: https://www.epa.gov/nsr

Coming Soon: Revisions to Petition Provisions of Title V Permitting Program

EPA is currently working to take final action on a 2016 proposal for revisions to the title V regulations. This proposal would streamline and clarify processes related to the submittal and review of title V petitions.

The proposed rule would bring more certainty for all stakeholders, including the sources required to obtain and maintain title V permits; more focused petitions; better title V permit records which are expected to result in fewer petitions; and reduced administrative burden in the EPA’s review of petitions in a tight timeframe.

Background

Congress established New Source Review as a preconstruction permitting program in the 1977 Clean Air Act Amendments. The program intended to ensure the maintenance of air quality standards around the country and that state of the art technology is installed at new plants or existing plants undergoing major modifications.

Under the NSR program, before constructing a new stationary emission source or major modification of an existing source, the source operator must determine whether the new source will emit or the project will increase air emissions above certain thresholds. If so, the operator may need to get a permit from a state government or EPA that may require installation of pollution control technology or other measures.

 

Contract your SCS project manager, or   if you have questions about the impact of these recent actions.

 

 

 

 

Posted by Diane Samuels at 6:03 am

December 12, 2019

REPRINT OF USEPA PRESS RELEASE

EPA Moves Forward on Key Drinking Water Priority Under PFAS Action Plan

WASHINGTON (Dec. 4, 2019) — Yesterday, the U.S. Environmental Protection Agency (EPA) sent the proposed regulatory determination for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in drinking water to the Office of Management and Budget for interagency review. This step is an important part of EPA’s extensive efforts under the PFAS Action Plan to help communities address per- and polyfluoroalkyl substances (PFAS) nationwide.

“Under President Trump, EPA is continuing to aggressively implement our PFAS Action Plan – the most comprehensive cross-agency plan ever to address an emerging chemical,” said EPA Administrator Andrew Wheeler. “With today’s action, EPA is following through on its commitment in the Action Plan to evaluate PFOA and PFOS under the Safe Drinking Water Act.”

The action will provide proposed determinations for at least five contaminants listed on the fourth Contaminant Candidate List (CCL4), including PFOA and PFOS, in compliance with Safe Drinking Water Act requirements.

Background

The Safe Drinking Water Act establishes robust scientific and public participation processes that guide EPA’s development of regulations for unregulated contaminants that may present a risk to public health. Every five years, EPA must publish a list of contaminants, known as the Contaminant Candidate List or CCL, that are known or anticipated to occur in public water systems and are not currently subject to EPA drinking water regulations. EPA publishes draft CCLs for public comment and considers those prior to issuing final lists.

After issuing the final CCL, EPA determines whether or not to regulate five or more contaminants on the CCL through a process known as a Regulatory Determination. EPA publishes preliminary regulatory determinations for public comment and considers those comments prior to making final regulatory determinations. If EPA makes a positive regulatory determination for any contaminant, it will begin the process to establish a national primary drinking water regulation for that contaminant.

For more information: www.epa.gov/ccl

Background on the PFAS Action Plan

PFAS are a large group of man-made chemicals used in consumer products and industrial processes. In use since the 1940s, PFAS are resistant to heat, oils, stains, grease, and water—properties which contribute to their persistence in the environment.

The agency’s PFAS Action Plan is the first multi-media, multi-program, national research, management and risk communication plan to address a challenge like PFAS. The plan responds to the extensive public input the agency received during the PFAS National Leadership Summit, multiple community engagements, and through the public docket. The PFAS Action Plan outlines the tools EPA is developing to assist states, tribes, and communities in addressing PFAS.

EPA is taking the following highlighted actions:

Highlighted Action: Drinking Water

  • EPA is committed to following the national primary drinking water regulation rulemaking process as established by the Safe Drinking Water Act (SDWA).
  • EPA has sent the proposed regulatory determination for PFOA and PFOS to the Office of Management and Budget for interagency review.
  • The agency is also gathering and evaluating information to determine if regulation is appropriate for other chemicals in the PFAS family.

 Highlighted Action: Cleanup

Highlighted Action: Monitoring

  • EPA will propose nationwide drinking water monitoring for PFAS under the next UCMR monitoring cycle.

Highlighted Action: Toxics

  • EPA has issued an advanced notice of proposed rulemaking that would allow the public to provide input on adding PFAS to the Toxics Release Inventory toxic chemical list.
  • A supplemental proposal to ensure that certain persistent long-chain PFAS chemicals cannot be manufactured in or imported into the United States without notification and review under the TSCA is currently undergoing interagency review at the Office of Management and Budget.

Highlighted Action: Surface Water Protection

  • EPA plans to develop national Clean Water Act human health and aquatic life criteria for PFAS, as data allows.
  • EPA is examining available information about PFAS released into surface waters by industrial sources to determine if additional study is needed for potential regulation.

Highlighted Action: Biosolids

  • EPA will be developing risk assessments for PFOA and PFOS to understand any potential health impacts.

Highlighted Action: Research

  • On November 22, 2019, EPA announced [the] availability of $4.8 million in funding for new research on managing PFAS in agriculture.
  • EPA continues to compile and assess human and ecological toxicity information on PFAS to support risk management decisions.
  • EPA continues to develop new methods to test for additional PFAS in drinking water.

The agency is also validating analytical methods for surface water, ground water, wastewater, soils, sediments and biosolids; developing new methods to test for PFAS in air and emissions; and improving laboratory methods to discover unknown PFAS.

  • EPA is developing exposure models to understand how PFAS moves through the environment to impact people and ecosystems.
  • EPA continues to assess and review treatment methods for removing PFAS in drinking water.
  • EPA is working to develop tools to assist officials with the cleanup of contaminated sites.

Highlighted Action: Enforcement

  • EPA uses enforcement tools, when appropriate, to address PFAS exposure in the environment and assists states in enforcement activities.

Highlighted Action: Risk Communications

  • EPA will work collaboratively to develop a risk communication toolbox that includes multi-media materials and messaging for federal, state, tribal, and local partners to use with the public.
  • A full summary of EPA’s action to address PFAS can be found in the PFAS Action Plan:

 

For more information, article, and treatment options visit SCS Engineers.

 

 

 

 

Posted by Diane Samuels at 6:05 am

December 9, 2019

According to the U.S. Geological Survey Circular 1344, the United States uses 79.6 billion gallons per day of fresh groundwater for public supply, private supply, irrigation, livestock, manufacturing, mining, thermoelectric power, and other purposes.  This blog is intended for businesses that must meet groundwater monitoring regulatory compliance according to EPA and state mandates, which are becoming increasingly stringent.

Stormwater

Have you had a regulatory compliance issue due to the condition of your groundwater monitoring wells or adequacy of your monitoring network? Are you confident compliance issues won’t arise in the future? Groundwater monitoring networks—including wells and dedicated sampling equipment—are often:

  • Ignored until a problem arises
  • A source of unplanned, unbudgeted expenses
  • Viewed as a necessary evil
  • A money sink that seems to grow every year

What if you managed your groundwater monitoring network like your other equipment assets? By taking a systematic asset management approach to maintaining your groundwater monitoring network you can:

  • Limit or avoid unplanned expenses
  • Avoid regulatory compliance issues
  • Maintain asset value
  • Reduce monitoring costs

Not concerned? Consider the likely results of the “if it ain’t really broke, don’t fix it” approach:

Regulatory Non-Compliance: Failure to comply with state and federal monitoring well regulations may result in a notice of non-compliance, fines, or legal action.

Repair and Maintenance Costs: Ignoring minor repairs and maintenance can lead to significant well repair or replacement costs. Simple repairs like lock replacement or ground surface seal repair are quick and low cost. Don’t let these minor items put you at risk for notification of non-compliance due to neglect. Other repairs such as protective casing or near-surface well casing repair may cost more but are a fraction of the cost of replacing a well that becomes unstable due to neglect.

Well Replacement Costs: Abandoning and replacing a single well that can no longer be repaired can cost $3,000 to $10,000+ depending on the depth and construction of the well.
As with many assets, you save time and money in the long run by addressing problems before they arise. So what does monitoring well asset management look like? It doesn’t have to be complicated, costly, or time-consuming. We recommend starting with a simple inventory following these basic steps:

1. Identify needed repairs and replacements of existing wells
2. Develop a plan to repair, replace, or abandon wells as needed
3. Identify deficiencies in the coverage of your well networks

Schedule inventory Steps 1-3 yearly. Download SCS Engineers’ useful well inspection checklist to record monitoring well conditions, identify well maintenance needs and identify the regulatory status of each well. Your trained staff or your environmental consultant can perform the yearly well inventory.

Contact SCS at for a groundwater expert near you.

 


 

Tom Karwoski
Tom Karwoski

About the Authors: Tom Karwoski, PG, has 30 years of experience as a hydrogeologist and project manager. He has designed and managed investigations and remediations at existing and proposed landfills; and industrial, Superfund, military, and petroleum sites. Mr. Karwoski was a hydrogeologist with the Wisconsin Department of Natural Resources prior to becoming an environmental consultant.

 

Meghan Blodgett
Meghan Blodgett

Meghan Blodgett, PG is a project professional with over eight years of experience in the environmental consulting field, including soil, groundwater, and soil vapor investigation and remediation; brownfield redevelopment; and solid waste landfill development. She is experienced in planning and performing soil and groundwater contamination investigations, monitoring well design and installation, hydraulic aquifer testing, and soil and groundwater sampling.

 

 

 

 

Posted by Diane Samuels at 6:05 am

December 6, 2019

REPRINT FROM THE EPA PRESS RELEASE

EPA Finds That Financial Risks from Petroleum and Coal Products Manufacturing Industry Does Not Warrant Additional Federal Requirements

WASHINGTON (Dec. 4, 2019) — Today, the U.S. Environmental Protection Agency (EPA) is proposing to not impose burdensome and potentially duplicative financial responsibility requirements for the petroleum and coal products manufacturing industry (the industrial sector that transforms crude petroleum and coal into usable products) because the financial risk to the federal government from those facilities is already addressed by various existing federal and state technical and financial requirements and modern material management practices. EPA’s proposed action would not drop existing federal requirements, rather it is a proposal to not impose additional requirements.

“After a thorough evaluation, EPA has determined that the petroleum and coal manufacturing industry’s current practices, along with existing federal and state regulations, adequately address potential financial risks to the federal government and American taxpayer,” said EPA Administrator Andrew Wheeler. “As part of President Trump’s commitment to protecting our environment and growing our economy, we are committed to responsible regulation while not imposing additional and unnecessary requirements on key sectors of the economy when the current regulatory framework is working.”

In the 39 years since the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) was enacted, a comprehensive regulatory framework has developed. Existing monitoring and operation standards have consistently worked over time to decrease the risk in this industry that if a hazardous waste cleanup is needed, the federal government will have to bear the cost of cleanup.

Further, this proposed finding does not affect, limit, or restrict EPA’s current authority to take a response action or enforcement action under CERCLA at any facility in this industry, to include requirements for financial responsibility as part of such response action, or to take appropriate action under various other federal environmental statutes that may apply to individual facilities, such as the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Toxic Substances Control Act. These existing regulations, including financial responsibility requirements, continue to apply to facilities in this industry.

This proposal is consistent with the analysis EPA undertook in developing its final action for the hard rock mining industry. In that case, EPA’s approach was unanimously upheld by the D.C. Circuit Court of Appeals in July 2019. EPA has evaluated the degree and duration of risk of the possible cost to cover the cleanup of hazardous substance releases associated with the production, transportation, treatment, storage, or disposal of hazardous substances in the petroleum and coal products manufacturing industry. EPA also examined the industry’s economic trends and the financial health of the sector and found the industry to be in a relatively stable financial position with low default risk. EPA’s evaluation showed that existing regulatory programs and voluntary practices reduce the need for federally financed response action at facilities in this industry.

Background

Section 108(b) of CERCLA, also known as Superfund, directs EPA to develop regulations requiring classes of facilities to establish and maintain evidence of financial responsibility to cover the costs associated with releases or threatened releases of hazardous substances from their facilities.

In December 2016, EPA described its plan to consider financial requirements under CERCLA for the electric power industry, the petroleum and coal products manufacturing industry, and the chemical manufacturing industry. On July 2, 2019, EPA proposed to not issue financial responsibility requirements for the electric power industry. EPA is currently working on a proposal for the chemical manufacturing industry.

Today’s proposal for the petroleum and coal industry will be published in the Federal Register, and EPA invites stakeholders and the public to provide comments during the 60-day public comment period.

For more information, visit: https://www.epa.gov/superfund/superfund-financial-responsibility, or contact SCS Engineers at for help.

 

 

 

 

 

Posted by Diane Samuels at 6:05 am

December 3, 2019

To support the growing use of technology by municipalities, in waste management, and by industrial and manufacturing clients, SCS Engineers is opening new offices. The newest office is in Lancaster, Pennsylvania. The office provides environmental engineering, consulting, and is the base for the east coast SCS Remote Monitoring and Control® (RMC) professionals.

The office is the third SCS location in Pennsylvania, and is located at:

SCS Engineers
1861 Charter Lane
Suite 107
Lancaster, PA 17601

Tel: +1-717-550-6330

SCS RMC® works closely with the firm’s business sectors developing software, applications, and support services, which harness technology to capture, track and evaluate environmental data, provide remote monitoring and controls, and drone services with advanced capabilities.

The SCS RMC® platform and applications help public and private clients control their equipment remotely, collect data and use the data to enhance their productivity, reduce their operations and maintenance costs, and reduce their environmental risk. The tools are versatile; SCS programmers, engineers, and scientists are available to develop custom applications meeting a spectrum of industrial environmental objectives for groundwater, leachate, air monitoring, and landfill gas management.

SCS RMC® uses a network of sensors and Machine-to-Machine (M2M) applications to help minimize equipment downtime by alerting staff to maximize production or to an operational safety issue. The system supports additional monitoring components as operations grow, providing facility owners and operators with a single secure application for their supervisory control and data acquisition (SCADA), data management, and reporting needs.

SCS RMC® is experiencing exponential growth, as industrial operations need technology most when reaction time is essential to avoid production downtime and continue operations within regulatory mandates to maintain public safety standards.

To discover how these and other next-generation technologies can support your operations, contact SCS at , or use the links below to explore:

 

 

 

Posted by Diane Samuels at 6:00 am

December 2, 2019

The U.S. Environmental Protection Agency (EPA) earlier this year proposed changes to the federal coal ash rule, saying it would eliminate requirements for onsite dry storage of coal ash, along with limiting environmental protections on large fill projects, except for those with what the agency calls “geologic vulnerabilities.” Under the original version of the rule, companies with fill projects larger than 12,400 tons had to ensure that the ash did not impact the soil, air, and water around the sites.

The power generation industry has said those changes could allow coal ash to be more easily recycled, opening more pathways for what’s known as “beneficial use” of ash, which includes the use of ash in construction materials such as concrete and wallboard. Environmentalists have said the proposal would lead to more untracked and unregulated coal ash. The EPA has been working with the utility industry since March 2018 to streamline the 2015-enacted Coal Combustion Residual (CCR) rule, which was issued after years of debate in the wake of large coal ash spills in Tennessee and North Carolina. The rule establishes technical requirements for CCR landfills and surface impoundments under subtitle D of the Resource Conservation and Recovery Act (RCRA), the nation’s primary law for regulating solid waste.

SCS Engineers closely follows developments relating to coal ash disposal, helping landfill operators, utilities, and others who deal with CCR meet the challenge of proper waste management as regulations evolve.

In addition to keeping up with rule changes, utilities are facing new challenges under the original CCR rules as time goes by, and CCR sites move through the regulatory timeline. Many utilities that began groundwater monitoring at CCR units under the rule in October 2017 and identified groundwater impacts are now entering the stage of remedy selection.

If groundwater monitoring shows that pollutants exceed groundwater protection standards (GWPS), then a response is required unless it can be shown that a source other than the CCR unit is responsible for the impacts, as documented in an Alternate Source Demonstration (ASD). The determination of what is best for a particular site is based on several factors and begins with what is known as an Assessment of Corrective Measures (ACM). The ACM is the first step in developing a long-term corrective action plan designed to address problems with pollutants in groundwater near areas of ash disposal. The ACM is pursuant to the EPA’s CCR rule.

“Obviously people are still looking at what things cost, but in our experience, working with utilities, the concern for the surrounding community and the environment is uppermost,” says Tom Karwoski, a vice president with SCS Engineers. Karwoski has 30 years of experience as a hydrogeologist and project manager, designing and managing investigations and remediations at existing and proposed landfills, as well as clean-ups of industrial, military, petroleum, and Superfund sites. Karwoski says his group has “no preconceived notions about what is best for all sites.”

Utilities working to satisfy requirements of the CCR rule have performed ACM and ASD projects, and several are moving into the “Remedy Selection” phase of the process. SCS Engineers is working with these utilities to determine the best remedies for CCR disposal, drawing on the company’s experience in providing solutions across the spectrum of waste management. SCS designs solutions for municipal solid waste (MSW)—in effect, trash and garbage, or what the EPA calls “everyday items such as product packaging, yard trimmings, furniture, clothing, bottles and cans, food, newspapers, appliances, electronics and batteries”—and also develops management programs for electric utility (EU) waste, such as CCR, which is far different in terms of scope and pollutants.

Eric Nelson, a vice president with SCS Engineers, one of the company’s national experts for electric utilities, and an experienced engineer and hydrogeologist, knows the challenges of establishing a successful program for managing CCRs. “The CCR rule quite literally borrows language from MSW rules; word for word in some instances. The stark difference, in my view, is the varied participation by regulators. In general, the states have not picked up the ball to oversee the rule as EPA has suggested they do, which is no small burden. However, many states had existing CCR management rules or have since enacted their own rules adding layers of regulation.” The EPA in June of this year supported a Georgia plan for CCR disposal, with EPA Administrator Andrew Wheeler saying, “EPA encourages other states to follow Georgia’s lead and assume oversight of coal ash management within their borders. EPA is committed to working with the states as they establish coal ash programs tailored to their unique circumstances that are protective of human health and the environment.”

Said Nelson: “My understanding was that when similar rules were introduced for MSW sites, the owner, their consultant, and a regulator [state or EPA] worked through the remedy selection process. There is no real-time regulatory feedback in many cases with the requirements in the federal CCR rule.”

Nelson is familiar with the process of establishing a program to manage CCRs. “The groundwater monitoring and corrective action portion of the CCR rule allows for specific timeframes for establishing a monitoring system, obtaining background samples, identifying statistically significant increases [SSI] in groundwater concentrations, assessing alternative sources of those SSI, completing assessment monitoring, and then assessing corrective measures for groundwater impacts above groundwater protection standards,” he says. “Stacking all of those timeframes onto one another has us where we are today [sites recently completing ACMs and working on remedy selection]. We are about to repeat this same cycle, starting with identifying SSIs, with groundwater monitoring of inactive surface impoundments that were previously exempt from groundwater monitoring under [rule section] 257.100, an exemption removed with previous rule revisions.”

At the moment, remedies for CCR units that have not already undergone closure will include some form of source control. The most likely controls include closure-in-place, sometimes called cap-in-place, or closure-by-removal of coal ash. Closure-in-place involves dewatering the impoundment—or converting wet storage to dry storage—stabilizing the waste, and installing a cover system to prevent additional water or other material from entering the impoundment. Closure-by-removal involves dewatering and excavating the CCR, then transporting it to a lined landfill.

In addition to these source control and closure strategies, remedies for groundwater impacts from CCR units might also include approaches from two other categories of corrective measure – active restoration and plume containment. The options available and those appropriate will depend on many site-specific factors including the size of the source, the groundwater constituents and concentrations, and the receptors at risk.

These factors, more remedies, and the selection process will be discussed in more detail as this blog series continues.

CCR and Electric Utilities

 

Tom Karwoski

Mr. Karwoski has 30 years of experience as a hydrogeologist and project manager. He has designed and managed investigations and remediations at landfills and for industrial, superfund, military, and energy firms.

 

Eric NelsonEric J. Nelson, PE, is a Vice President of SCS Engineers and one of our National Experts for Electric Utilities. He is an engineer and hydrogeologist with over 20 years of experience. His diverse experience includes solid waste landfill development, soil and groundwater remediation, and brownfield redevelopment. He is a Professional Engineer licensed in Wisconsin and Iowa.

 

Mark Huber

Mark Huber is a Vice President and Director of SCS’s Upper Midwest Busines Unit. He is also one of our National Experts in Electric Utilities. Mark has nearly 25 years of consulting experience in civil and environmental engineering.  His experience working on a variety of complex challenges for utilities allows him to quickly identify key issues and develop smart, practical solutions. He also has expertise in urban redevelopment projects with technical expertise in brownfield redevelopment, civil site design, and stormwater management.

 

 

 

 

Posted by Diane Samuels at 6:00 am

November 25, 2019

Introduction

PFAS are a class of synthetic fluorinated chemicals used in many industrial and consumer products, including defense‐related applications. They are persistent, found at low levels in the environment, and bio‐accumulate. Studies have shown these compounds being detected more often in surface water, sediments and/or bioaccumulated into fish tissue. Because of the greater affinity of longer chain per‐ and polyfluoroalkyl substances (PFASs) compounds for fish than other environmental matrices, certain compounds are often found in fish tissue, but not in the water or sediment. Table 1 shows average concentrations of PFOA and PFOS in landfill leachates around the world. The USEPA health advisory level is 70 ppt for PFOA and PFOS.

Table 1.  Concentrations of PFAS compounds in Landfill Leachate around the world

Compound US Germany China
PFOA (ppt) 660 150 280-214,000
PFOS (ppt) 110 30 1,100-6,000

 

Treatment Options for PFOS and PFOA

The removal of PFASs from drinking water has been the USEPA’s national priority. Recent discoveries of PFAS/PFOS in drinking water in multiple states in the US has heightened interest in these emerging contaminants. Federal, state, and local agencies are formulating regulatory limits that vary greatly. These limits seem to be centered on drinking water, but these developments are driving disposal of existing stores of chemicals containing PFAS/PFOS and environmental media contaminated with PFAS/PFOS

Treatment processes that can remove PFAS chemicals from drinking water may include high-pressure membrane systems such as RO, granular activated carbon (GAC), or ion exchange as shown in Figure 1. The more conventional water treatment technologies such as (e.g., aeration) are not typically effective.

Figure 1. PFAS Removal Processes (a) Membranes, (b) GAC and (c) Ion Exchange Resins
PFAS treatment


PFAS Removal

 

Landfill Leachate RO Treatment Plant – New Hanover County, North Carolina

New Hanover County upgraded its leachate treatment system to meet stricter regulatory standards for surface water discharges, particularly standards relating to metals (arsenic) and ammonia. Sampling by NC DEQ showed the new RO plant is filtering out PFAS. Table 2 shows the results from February 2019.

Figure 2. New Hanover County Leachate and PFAS Treatment Plant

New Hanover County Leachate and PFAS Treatment Plant

Table 2. Concentrations of PFAS compounds in Leachate at New Hanover County Landfill

PFAS Constituent Raw Treated Surface water
PFOA (ppt) 1,250 < 0.6 3.9
PFOS (ppt) 228 < 0.6 7.1

 

Comparison of GAC Types for PFOA and PFOS Removal

Four different types of GAC, i.e., Re-agglomerated Bituminous, Lignite, Enhanced Coconut and Enhanced Coconut (Blend) were evaluated under identical operating conditions and influent water quality. Figure 4 shows results from these four GAC products for PFOA/PFOS removal vs time.

Figure 4. GAC Treatability study for removal of PFOA and PFOS

GAC Treatability study for removal of PFOA and PFOS

Re-agglomerated bituminous coal GAC (FILTRASORB) significantly outperformed: Lignite, Enhanced Coconut and Enhanced Coconut (Blend).

Summary:

PFAS compounds are of concern because they do not break down in the environment, bioaccumulate in humans and biota, and may pose risks to human health

GAC, Synthetic adsorbent, and ion exchange resins are widely used for PFAS removal. Capacity and leakage of PFASs into the treated water varies depending on the specific PFASs, the type of adsorbent used.

PFAS removal may be influenced by pH, water temperature, contact time, Natural Organic Matter, and chlorine. For complete PFAS removal, a polishing may be required.

Disposal methods for PFAS waste streams include high-temperature incineration or landfilling. Landfilling is not favored since the PFAS load would increase, and many landfills will not accept PFAS waste.

 

Dr. deSilvaAbout the Author:  Dr. deSilva is SCS’s Director of Wastewater Treatment. He has 30 years of progressive experience in wastewater engineering, from concept through construction and start-up, and is an international leader in operations and maintenance, energy management, solids handling processes, construction management, and commissioning wastewater treatment plants (WWTP) around the world.

Liquids Management 

 

Posted by Diane Samuels at 6:00 am

November 18, 2019

According to Sean Bothwell, the executive director of the California Coastkeeper Alliance, “There are … thousands of facilities that have failed to enroll in the industrial stormwater permit, creating an economic disadvantage for those facilities that are doing their job to be compliant with their permit. SB-205 will level the playing field for the regulated community and help California achieve their mission of attaining swimmable, fishable, and drinkable California waters.”

California’s Stormwater Multiple Application and Report Tracking System (SMARTs) currently shows approximately 13,000+ active industrial stormwater sites/dischargers (Notice of Intent and No Exposure Sites). For these current General Stormwater Permit (IGP) enrollee’s vs. non-filers, the playing field has not been level across industrial sectors. There is a cost, sometimes substantial, for being in, and maintaining compliance under the IGP. The Permit is fee-based; water quality regulatory programs and the programs and resources supporting those programs are funded directly with the fees collected by these regulated entities under those programs.

The additional late-permittees and associated fees will help with the challenge of staffing at the State and Regional Boards, for processing and enforcement. As of today, there is not a direct additional fee/fine for the potential late filers; the message being that potential dischargers (or SIC code-based Facilities with a condition of No Exposure) not covered under the IGP should enroll as soon as possible, to avoid potential initial fines and future costly penalties.

Future penalties could also include “de facto” regulatory compliance penalties through non-government organizations (NGOs) and environmental group citizen lawsuits and 60-day notice-of-intents under Section 505 of the Clean Water Act.  SCS Engineers advises businesses to check the Regional Board to see if they need coverage.

If unsure or unfamiliar with stormwater compliance, seek help from a Qualified Industrial Stormwater Practioner (QISP) or begin by using the resources linked to helpful sites from our blog. Although not a comprehensive list, these types of facilities do need stormwater compliance, as follows:

      • Asphalt Batch Plants,
      • Breweries
      • Concrete and Rebar Manufacturers,
      • Construction Material Facilities,
      • Deep Ocean Ports,
      • Haulers and Transportation Facilities,
      • Landfill Gas-to-Energy Plants,
      • Landfills (including Subchapter N/ELG Facilities),
      • Lumber Facilities,
      • Material Recovery Facilities (MRFs),
      • Petroleum Bulk Plants,
      • Quarries,
      • Recycling (Metal and Scrap),
      • Wineries

 

Jonathan Meronek
Jonathan J. Meronek
QISP-ToR, ENV SP, CPESC, QSP/D
Project Manager, SCS Engineers

About the Author: Jonathan Meronek is a State of California Industrial General Permit (IGP) Qualified Industrial Storm Water Practitioner (QISP), QISP Trainer-of-Record (QISP-ToR) and an Envision Sustainability Professional (ENV-SP). With an eye to clients’ operational needs combined with long-term sustainable solutions, Jonathan has performed Site BMP and Pollutant Source Assessments, written Stormwater Pollution Prevention Plans (SWPPPs), and implemented Monitoring Implementation Plans (MIPs); for over one-hundred facilities throughout California.

He continues to provide National Pollutant Discharge Elimination System (NPDES) stormwater services for state, municipal, and private clients across a vast cross-section of industrial sectors. Jonathan works with LRPs, facility managers, and attorneys to re-evaluate facilities comprehensively for NPDES compliance using technology-based BPT/BCT/BAT/NSPS levels of control to reduce and eliminate pollutants of concern in stormwater discharge.

 

 

 

 

 

Posted by Diane Samuels at 6:00 am
SCS Address

Corporate Headquarters

3900 Kilroy Airport Way Suite 300
Long Beach, CA 90806

Telephone

1 (800) 767-4727
1 (562) 427-0805 | FAX
Contact Us

Required Posting
Send us a message
×