carbon sequestration

October 2, 2023

Carrie Ridley

SCS Engineers is thrilled to welcome Carrie Ridley to the Wichita, Kansas, office. Carrie is a licensed professional geologist joining us from the Kansas Geological Survey, where she held Project Manager and Principal Investigator roles for Department of Energy projects. These projects focused on Carbon Capture, Utilization and Storage, and investigation into Critical Minerals.

Prior to that, she spent four years as the Geology and Well Technology Chief within the Kansas Department of Health and Environment. There, she managed the federally designated UIC 1422 program, the Underground Hydrocarbon Storage and Water Well Contractors programs. Prior to UIC work, she worked for six years with the RCRA program in the Bureau of Waste Management as a project manager.  Carrie spent ten years with the Kansas Department of Transportation in the Topeka Geology office to begin her career after receiving her MS degree from Kansas State University.

Carrie brings extensive knowledge of state and federal funding, project development, and contracting programs. We are excited to have her join our Deep Well Injection and Carbon Sequestration team.

Monte Markley, our Deep Well and Carbon Sequestration National Expert states, “We are excited to have Carrie join SCS; her extensive knowledge of the UIC universe will benefit our clients and further strengthen our team.”

 

If you’d like to work with experts such as Carrie Ridley on work to preserve our quality of life – visit SCS.

Posted by Diane Samuels at 3:48 pm

September 25, 2023

net zero california
Public-private partnerships highlight the nation’s commitment to responsible carbon capture and storage practices by harnessing the potential of our natural surroundings to address climate change. Sacramento-San Joaquin River Delta – a portion of the California Delta.

 

Taking a Critical Step Towards Net Zero Emissions Using Carbon Sequestration

The picturesque California Delta, often referred to as the Sacramento-San Joaquin Delta, is emerging as a geological sweet spot in California’s ambitious journey toward reaching net zero carbon emissions. Its unique geology presents a compelling case for carbon sequestration, an essential strategy in the battle against climate change. Recent developments, including a collaborative effort between SCS and Lawrence Livermore National Laboratory (LLNL) on a Class VI permit application for Pelican Renewables – a company formed by Delta landowners and residents to pursue geologic storage – are indicative of the region’s growing importance in California’s carbon mitigation strategy.

Geological Foundations of Carbon Sequestration in the California Delta

The California Delta, often referred to as the Sacramento-San Joaquin Delta, is a vast inland delta formed by the confluence of the Sacramento and San Joaquin rivers and their tributaries as they meet the waters of the San Francisco Bay. Its unique geology makes it an ideal candidate for carbon sequestration:

  1. Sedimentary Riches: The Delta’s subsurface predominantly comprises thick sedimentary deposits. These layers of sediment offer substantial storage capacity for carbon dioxide, providing an opportunity to trap and store emissions safely underground.
  2. Aquifers Beneath: Deep beneath the Delta’s surface lie extensive brine aquifers, isolated from the atmosphere. These natural reservoirs can serve as secure carbon storage sites, with a proven ability to hold CO2 securely over geologic time.
  3. Stability Amidst Earthquakes: The Delta region is seismically inactive compared to other parts of California. This geological stability is vital for the long-term integrity of carbon storage sites.
  4. Proximity to CO2 Sources: The Delta’s strategic location in close proximity to many major emission sources, including industrial facilities and urban centers like Sacramento and San Francisco, reduces transportation costs and emissions associated with moving captured CO2.

 

California’s Net Zero Carbon Goal and Carbon Sequestration in the Delta

California has set an ambitious goal to achieve net zero carbon emissions by 2045, a milestone in the fight against climate change. Achieving this objective necessitates reducing emissions and actively removing and storing carbon from the atmosphere. Carbon sequestration in the California Delta can play a pivotal role in this endeavor. The Delta’s geological potential aligns seamlessly with the state’s commitment to sustainable practices and environmental responsibility.

Collaborative Efforts: SCS and LLNL’s Support for Pelican Renewables’ Class VI Permit Application

The collaboration between SCS Engineers and Lawrence Livermore National Laboratory (LLNL) that supported geologic characterization, modeling, and CO2 injection simulation for Pelican Renewables’ injection well application underscores the importance of pursuing carbon sequestration in the California Delta. The Class VI permit application underlines Pelican’s commitment to conducting carbon capture and storage (CCS) activities with the highest safety and environmental standards. This initiative is a testament to the growing synergy between scientific research and private enterprise in addressing climate challenges.

References and Further Reading

For a deeper dive into California’s carbon removal options for reaching net zero, “Getting to Neutral” by LLNL is a valuable resource. This publication outlines the various strategies and technologies under research to achieve California’s ambitious carbon reduction goals, including carbon sequestration in regions like the California Delta. The most recent “Scoping Plan” by the California Air Resources Board – the state’s policy blueprint for achieving its climate goals – underscores the need to capture and store CO2 from large sources and the atmosphere.

Our Conclusions

The California Delta’s geological attributes make it an attractive destination for carbon sequestration, a critical component in California’s mission to achieve net zero carbon emissions. Collaborative endeavors like SCS’s ongoing partnership with LLNL and Pelican Renewables highlight the commitment to responsible carbon capture and storage practices. As we continue to innovate and harness the potential of our natural surroundings, the California Delta’s role in addressing climate change becomes increasingly evident and essential.

 

Carbon Sequestration Considerations & Resources

 

gary vancilAbout the Author: Gary Vancil is an SCS project director and geologist supporting the environmental firm’s safe carbon sequestration and deep well injection practice. He earned his MS and BS in Geosciences with an emphasis in resource geology at Southern Illinois University of Carbondale. Mr. Vancil’s expertise also covers resource development, extraction, and mining sub-surface investigations for the nation’s largest privately held mining company. If you’d like to learn more or have questions, reach Gary at or LinkedIn.

 

 

Posted by Diane Samuels at 6:00 am

September 7, 2023

carbon capture and sequestration
Educational videos are available on the scsengineers.com website. Always free and non-commercial.

 

Capturing carbon and injecting it into a carbon sequestration well, also called a Class VI Well, is an EPA-approved technology. Manufacturers and industries are considering using carbon sequestration to reduce greenhouse gas emissions (CO2). Often, the public is concerned that carbon injection wells could contaminate underground drinking water — a legitimate concern, given today’s headlines. In this environmental engineering blog, we’ll describe the two ways underground drinking water could be contaminated and how to prevent it.

Contamination can occur if the CO2 can migrate up the well bore into the aquifer anytime after injection. The second instance is if pressure forces the brine from the injection zone into the aquifer.

Environmental engineering teams, which include professional geologists, hydrogeologists, and geoscience experts, take steps and provide well-operators guidance to protect drinking water sources, including calculating the Area of Review (AOR) around the injection well and computational modeling to understand how the pressures can build up during injection to create unsafe conditions.

Armed with expert knowledge and more modeling accuracy, operators can prevent contamination, extend the life of carbon sequestration wells, and address public concerns.

Dr. Charles Hostetler explains in the SCS educational video how accurately calculating the AOR and understanding critical pressure work together so companies can confidently use carbon capture and sequestration to reduce greenhouse gas emissions safely.

Click to watch

A Computational Modeling Approach to Critical Pressure Calculations for Class VI Area of Review Delineation

 

At SCS, we’re always available to answer questions – contact SCS at or find an office near you. Human Resources would like to hear from you if you desire a rewarding career working with companies to help them run efficiently and cleaner.

 

Charles HostetlerAbout the Speaker: Dr. Charles Hostetler has nearly four decades of experience as a consulting hydrogeologist. His expertise includes permitting, interacting with regulatory agencies and stakeholder groups, and numerical modeling of hydrogeological processes.

 

Additional Carbon Sequestration Resources:

 

 

 

 

Posted by Diane Samuels at 6:00 am

September 5, 2023

Join SCS Engineers professionals at the Illinois Manufacturer’s Association’s Environment & Energy Conference on October 18 at Governors State University in University Park, IL (Chicago south suburbs).

Hear from SCS expert Charles Hostetler, Ph.D., who is delivering a presentation on Carbon Capture and Sequestration.

The conference is taking shape. Check back as more details are available.

 

Posted by Laura Dorn at 4:10 pm

August 25, 2023

Carbon Sequestration

Many companies are exploring carbon capture and sequestration (CCS) to help reach greenhouse gas emission reduction goals. Protecting aquifers is a primary concern for the public to safeguard underground drinking water sources. Starting with near-surface background environmental monitoring is the first step to addressing public concerns and maintaining safety.

A comprehensive monitoring plan helps preserve the safest conditions and can save time and expense during injection and post-closure care. This SCS Engineers webinar explains the concepts, how it protects aquifers, and what to look for in a background monitoring plan. Establishing baseline conditions before injection is the first step. Starting immediately after submitting the Class VI permit application, during the regulatory technical review period provides the time to take these important baseline measurements.

Dr. Charles HostetlerDr. Charles Hostetler, with nearly four decades of experience as an engineer and hydrogeologist protecting aquifers, explains why near-surface monitoring is important to meet demands for addressing environmental concerns during the design and operation of a CCS project. His expertise helps protect aquifers and save time during the design, build, and operation of CCS wells through closure.

Click here to watch Near Surface Environmental Monitoring: Background for Shallow Drinking Water and Protecting Aquifers

 

 

 

Posted by Diane Samuels at 6:00 am

August 14, 2023

Carbon Capture Storage Sequestration SCS Engineers
Lower your carbon footprint with the help of this SCS educational video series.

 

Class VI Underground Injection Control Well Permitting is Part III of our video series on Carbon Capture and Storage. Cutting through red tape and regulatory barriers is key to keeping the permitting process on track for your Class VI UIC well. There are steps you can take to prevent delays and meet key regulatory requirements.

Watch the SCS’s Carbon Capture and Storage webinar to learn more about each phase of the permitting process and how to keep each running smoothly. Carbon capture and storage is an EPA-approved technology companies are exploring to help them reduce their greenhouse gas emissions, and understanding the permitting process is key as you plan your project. In this chapter you’ll get answers to these questions:

  • What are the steps to permit a Class VI UIC well, and what does the cost curve look like?
  • When should you start each step to make sure you’re ready for the next one?
  • What are the common pain points in the Class VI well permitting process and how can you mitigate them?

Your business does not have to be in Illinois to learn from these educational webinars. If you’re ready to explore the benefits of carbon capture and storage but concerned you’ll get delayed by the ins and outs of the Class VI UIC well permitting process, watch Patty Herman’s video to learn more, or contact your local SCS office for a consultation.

 

Click to watch The Class VI UIC Well Permitting Process

 

Patty HermanPatty Herman graduated from Southern Illinois University Edwardsville with a Master of Science in Biological Sciences. Working in diverse and unique habitats enhances her awareness of the ecosystem’s fragility and the need to protect it, especially for agencies during the permitting process. During graduate school, she was selected by the Illinois Department of Natural Resources for the Natural Heritage Residency program. The residency provided exposure to resource management in both public and private sectors, interacting with many federal, state, and local agencies, as well as NGOs and landowners. She writes and executes management plans and permits using her intensive experience in land management techniques. She has the unique ability to find common ground with stakeholders, agencies, and the public in safe land management for industrial and manufacturing.

 

Additional Resources:

 

Posted by Diane Samuels at 6:00 am

August 7, 2023

Carbon Capture Storage Sequestration SCS Engineers
Lower your carbon footprint with the help of this SCS educational video series.

 

Carbon capture and storage (CCS) enables industry and manufacturing to reduce greenhouse gas footprints by up to 2 million metric tons annually, for decades. It’s a great time to learn how this technology works, how it can help you, and what the overall lifecycle of a CCS project looks like. In this chapter, Kacey Garber and Candy Elliot step through best practices based on project experience, regulations (in this example Illinois), and the compilation and submittal of permit applications. You’ll learn about:

  • The CCS project life cycle.
  • Key considerations and best practices at each step in the project process.
  • Overcoming common challenges.

Your business does not have to be in Illinois to learn from these educational, non-commercial webinars. Transform how industry leaders like you manage greenhouse gas as a byproduct of modern life.

 

Click to watch The Components of a CCS Project – Permitting, Engineering, Operating, Monitoring to Closure

 

Helpful Basic Tips:

Early planning and mindful project scoping are critical for a CCS project to understand and communicate the project’s needs, objectives, goals, and conceptualized design. Use site characterization data and have a good handle on the operational parameters to develop a good first model and initial area of review delineation. The monitoring system design should then be tailored based on those data. Use the baseline and operational monitoring data to calibrate the model and refine your area of review delineation.

Early financial planning is also important and should include long-term operations and monitoring. Spend rates will be variable throughout these projects and highly dependent on the project’s phase.

The site geology is a key factor — we highly recommend conducting a feasibility study before beginning a project to assess the suitability of Class 6 injection at the proposed location. In addition, when the permit process begins, it’s important to front-load the site characterization efforts to minimize the uncertainty surrounding your site suitability.

Proactive stakeholder engagement surrounding your project is more likely to help lead your project to success. Developing outreach plans help open and facilitate lines of communication with stakeholders, regulatory officials, and public and environmental advocate groups.

Use an iterative project approach – permitting is not a cookie-cutter but a site-specific process. Your early and thorough planning steps help create a feedback loop that will go on throughout the project’s life. It enables flexibility in implementing your approach.

 

Kacey GarberKacey Garber is an experienced groundwater project manager for active and closed industrial clients, including routine groundwater monitoring and statistical analyses; reports and permit applications; designing sampling and analysis plans; special groundwater studies; and conducting groundwater well construction planning and design. She has also been involved in PFAS work groups and publishes on the topics of UIC and geologic sequestration. Ms. Garber has a Masters degree in Geoscience.

Candy ElliottCandy Elliott has 14 years of experience in assessment and remediation, including comprehensive geologic and hydrogeologic site assessments in several states. Her projects include site characterization, site assessment and remediation, brownfields, groundwater monitoring and reporting, groundwater corrective action, mining, and other industrial facility or site development projects. She also supports new and existing geologic permitting assignments for waste clients and facilities. Ms. Elliott is a licensed Professional Geologist.

 

 

Posted by Diane Samuels at 6:00 am

July 31, 2023

Carbon Capture Storage Sequestration SCS Engineers
Lower your carbon footprint with the help of this SCS educational video series.

 

Engaging With Your Stakeholders and Public Outreach is Part II of our four part video series. 

Geologic sequestration can be seen as an incredible public good that reduces greenhouse gas and protects the health and wellness of generations to come, or a local risk. It’s likely you will receive questions and concerns from the public and other stakeholders during your project’s lifecycle. You can use an effective stakeholder engagement plan to help you anticipate and respond to those questions and concerns.

Watch the Geologic Sequestration webinar to learn how to engage your key stakeholders in a supportive, consistent way that demonstrates your commitment to the community and builds trust. Geologic sequestration is an EPA-approved technology companies are exploring to help them reduce their greenhouse gas emissions. In this chapter you’ll learn:

  • How to identify key stakeholders – who should you engage?
  • How to educate, inform, and regularly gather and incorporate feedback to build trust
  • Examples of successful stakeholder engagement

If you’re ready to explore the benefits of geologic sequestration and want to educate the public and stakeholders about the safety and sustainability of Class VI underground injection control wells, watch Richard Southorn’s video to learn more, or contact your local SCS office for a consultation.

 

Click here to watch Geological Sequestration: Engaging With Your Stakeholders and Public Outreach

 

Richard SouthornRichard Southorn, PE, PG, serves as Project Director in our Chicagoland office. He manages coal combustion residual (CCR) and municipal solid waste projects, ranging from construction plan development to full-scale design services. He is a licensed Professional Engineer in Illinois, New York, Pennsylvania, Maryland, Delaware, Alabama, South Carolina, Kansas, Michigan, Indiana, Hawaii, Oregon, and Georgia; and a licensed Professional Geologist in Illinois and Delaware.

 

Additional Resources: 

 

 

Posted by Diane Samuels at 6:00 am

July 24, 2023

SCS Engineers Videos for public use
The SCS Engineers Learning Center provides hundreds of videos for communities and businesses interested in becoming more environmentally friendly through efficiency and other sustainable methods.

 

Our latest video release is Carbon Capture and Storage – CCS Webinar Series. The video features Illinois as an example, but much of the information pertains to all states. Shifting consumer sentiment drives significant rewards to companies that acknowledge and address their climate impact. Many legislators, regulators, and industry professionals agree carbon capture and sequestration (CCS) is one way to lower carbon footprints. Watch the Illinois Basin Carbon Capture and Storage webinar to learn about the benefits. It is an EPA-approved technology that companies are exploring to help reduce greenhouse gas emissions. CCS includes three main components:

  1. Capturing the carbon dioxide
  2. Transporting the carbon dioxide
  3. Injecting the carbon dioxide into deep underground rock formations to safely capture and store it away from groundwater and the atmosphere.

 

Geologic sequestration of CO2 can be of great benefit because it plays an important role in reducing GHG emissions, but some may see it as a risk without education. We’ve broken the webinar about the key influencers for industry and manufacturing use into 5 chapters:

  1. 00:00 Speakers and Why CCS is Important to Address Sustainability and Climate Change
  2. 04:17 Key Considerations for CCS Projects
  3. 14:00 Engaging With Your Stakeholders and Public Outreach
  4. 21:17 The Class VI Permitting Process
  5. 35:18 The Components of a CCS Project – Permitting, Engineering, Operating, Monitoring to Closure

 

Our professionals are available to answer questions about this technology and other methods to reduce your carbon footprint. Contact us at .

 

Posted by Diane Samuels at 6:00 am

July 17, 2023

Carbon Capture Storage Sequestration SCS Engineers
Lower your carbon footprint with the help of this SCS educational video series.

 

What if you could reduce your company’s greenhouse gas (GHG) emissions by 1.5 to 2 million metric tons per year for the next 20 years?

Now you can, with carbon capture and storage technology. Watch the Illinois Basin Carbon Capture and Storage webinar to learn more. Carbon capture and storage is an EPA-approved technology companies are exploring to help reduce GHG emissions.

In Illinois and many other states, leading firms are submitting permit applications for Class VI underground injection control wells. It’s a great time to review the state of the practice and learn how this technology works and how it can help you meet your carbon reduction goals. In this video chapter, SCS answers these questions:

  • What is the carbon capture and storage process?
  • What are the costs, benefits, and incentives?
  • How much carbon can you store in a well?
  • How big of an impact can just one well make?

This technology is on track to transform how industry leaders like you manage greenhouse gas as a byproduct of modern life. Watch Charles Hostetler’s short video to learn more, or contact your local SCS Engineers’ office for a consultation.

Click to watch Key Considerations for CCS Projects

 

Charles HostetlerDr. Charles Hostetler has nearly four decades of experience as an engineer and hydrogeologist. He has diverse experience in coal combustion residue (CCR) and solid waste management permitting, design, and construction projects. His areas of expertise focus on supporting electric utilities, property owners and developers, solid waste facility owners and operators to meet demands for addressing environmental changes and impacts on their operations.

 

Additional Resources:

 

 

 

 

Posted by Diane Samuels at 6:00 am